Loading…

New production matrices for geometric graphs

We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs i...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2022-01, Vol.633, p.244-280
Main Authors: Esteban, Guillermo, Huemer, Clemens, Silveira, Rodrigo I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3
cites cdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3
container_end_page 280
container_issue
container_start_page 244
container_title Linear algebra and its applications
container_volume 633
creator Esteban, Guillermo
Huemer, Clemens
Silveira, Rodrigo I.
description We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.
doi_str_mv 10.1016/j.laa.2021.10.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619121224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521003785</els_id><sourcerecordid>2619121224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANwicSVh13biVJxQxZ9UwQXOlu2sS6K2KXYK4u1xFM6cVrOa2R19jF0iFAhY3XTFxpiCA8ekC0BxxGZYK5FjXVbHbAbAZS7UojxlZzF2ACAV8Bm7fqHvbB_65uCGtt9lWzOE1lHMfB-yNfVbGnW2Dmb_Ec_ZiTebSBd_c87eH-7flk_56vXxeXm3yp3g5ZBb470TypJzshZGgmnACqeayqJEV_nSKmOdBK9EU0FNoKh2coHSAtWWxJxdTXdTsc8DxUF3_SHs0kvNK1wgR85lcuHkcqGPMZDX-9BuTfjRCHqEojudoOgRyrhKUFLmdspQqv_VUtDRtbRz1LSB3KCbvv0n_QuzmmmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619121224</pqid></control><display><type>article</type><title>New production matrices for geometric graphs</title><source>Elsevier</source><creator>Esteban, Guillermo ; Huemer, Clemens ; Silveira, Rodrigo I.</creator><creatorcontrib>Esteban, Guillermo ; Huemer, Clemens ; Silveira, Rodrigo I.</creatorcontrib><description>We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.10.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Characteristic polynomials ; Combinatorial analysis ; Eigenvectors ; Generating functions ; Geometric graphs ; Graphs ; Linear algebra ; Polynomials ; Production matrices ; Riordan Arrays</subject><ispartof>Linear algebra and its applications, 2022-01, Vol.633, p.244-280</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</citedby><cites>FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</cites><orcidid>0000-0002-0751-7729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Esteban, Guillermo</creatorcontrib><creatorcontrib>Huemer, Clemens</creatorcontrib><creatorcontrib>Silveira, Rodrigo I.</creatorcontrib><title>New production matrices for geometric graphs</title><title>Linear algebra and its applications</title><description>We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.</description><subject>Characteristic polynomials</subject><subject>Combinatorial analysis</subject><subject>Eigenvectors</subject><subject>Generating functions</subject><subject>Geometric graphs</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Polynomials</subject><subject>Production matrices</subject><subject>Riordan Arrays</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANwicSVh13biVJxQxZ9UwQXOlu2sS6K2KXYK4u1xFM6cVrOa2R19jF0iFAhY3XTFxpiCA8ekC0BxxGZYK5FjXVbHbAbAZS7UojxlZzF2ACAV8Bm7fqHvbB_65uCGtt9lWzOE1lHMfB-yNfVbGnW2Dmb_Ec_ZiTebSBd_c87eH-7flk_56vXxeXm3yp3g5ZBb470TypJzshZGgmnACqeayqJEV_nSKmOdBK9EU0FNoKh2coHSAtWWxJxdTXdTsc8DxUF3_SHs0kvNK1wgR85lcuHkcqGPMZDX-9BuTfjRCHqEojudoOgRyrhKUFLmdspQqv_VUtDRtbRz1LSB3KCbvv0n_QuzmmmN</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Esteban, Guillermo</creator><creator>Huemer, Clemens</creator><creator>Silveira, Rodrigo I.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0751-7729</orcidid></search><sort><creationdate>20220115</creationdate><title>New production matrices for geometric graphs</title><author>Esteban, Guillermo ; Huemer, Clemens ; Silveira, Rodrigo I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characteristic polynomials</topic><topic>Combinatorial analysis</topic><topic>Eigenvectors</topic><topic>Generating functions</topic><topic>Geometric graphs</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Polynomials</topic><topic>Production matrices</topic><topic>Riordan Arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esteban, Guillermo</creatorcontrib><creatorcontrib>Huemer, Clemens</creatorcontrib><creatorcontrib>Silveira, Rodrigo I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteban, Guillermo</au><au>Huemer, Clemens</au><au>Silveira, Rodrigo I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New production matrices for geometric graphs</atitle><jtitle>Linear algebra and its applications</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>633</volume><spage>244</spage><epage>280</epage><pages>244-280</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.10.013</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-0751-7729</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2022-01, Vol.633, p.244-280
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2619121224
source Elsevier
subjects Characteristic polynomials
Combinatorial analysis
Eigenvectors
Generating functions
Geometric graphs
Graphs
Linear algebra
Polynomials
Production matrices
Riordan Arrays
title New production matrices for geometric graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20production%20matrices%20for%20geometric%20graphs&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Esteban,%20Guillermo&rft.date=2022-01-15&rft.volume=633&rft.spage=244&rft.epage=280&rft.pages=244-280&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.10.013&rft_dat=%3Cproquest_cross%3E2619121224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619121224&rft_id=info:pmid/&rfr_iscdi=true