Loading…
New production matrices for geometric graphs
We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs i...
Saved in:
Published in: | Linear algebra and its applications 2022-01, Vol.633, p.244-280 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3 |
container_end_page | 280 |
container_issue | |
container_start_page | 244 |
container_title | Linear algebra and its applications |
container_volume | 633 |
creator | Esteban, Guillermo Huemer, Clemens Silveira, Rodrigo I. |
description | We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices. |
doi_str_mv | 10.1016/j.laa.2021.10.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619121224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521003785</els_id><sourcerecordid>2619121224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANwicSVh13biVJxQxZ9UwQXOlu2sS6K2KXYK4u1xFM6cVrOa2R19jF0iFAhY3XTFxpiCA8ekC0BxxGZYK5FjXVbHbAbAZS7UojxlZzF2ACAV8Bm7fqHvbB_65uCGtt9lWzOE1lHMfB-yNfVbGnW2Dmb_Ec_ZiTebSBd_c87eH-7flk_56vXxeXm3yp3g5ZBb470TypJzshZGgmnACqeayqJEV_nSKmOdBK9EU0FNoKh2coHSAtWWxJxdTXdTsc8DxUF3_SHs0kvNK1wgR85lcuHkcqGPMZDX-9BuTfjRCHqEojudoOgRyrhKUFLmdspQqv_VUtDRtbRz1LSB3KCbvv0n_QuzmmmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619121224</pqid></control><display><type>article</type><title>New production matrices for geometric graphs</title><source>Elsevier</source><creator>Esteban, Guillermo ; Huemer, Clemens ; Silveira, Rodrigo I.</creator><creatorcontrib>Esteban, Guillermo ; Huemer, Clemens ; Silveira, Rodrigo I.</creatorcontrib><description>We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.10.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Characteristic polynomials ; Combinatorial analysis ; Eigenvectors ; Generating functions ; Geometric graphs ; Graphs ; Linear algebra ; Polynomials ; Production matrices ; Riordan Arrays</subject><ispartof>Linear algebra and its applications, 2022-01, Vol.633, p.244-280</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</citedby><cites>FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</cites><orcidid>0000-0002-0751-7729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Esteban, Guillermo</creatorcontrib><creatorcontrib>Huemer, Clemens</creatorcontrib><creatorcontrib>Silveira, Rodrigo I.</creatorcontrib><title>New production matrices for geometric graphs</title><title>Linear algebra and its applications</title><description>We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.</description><subject>Characteristic polynomials</subject><subject>Combinatorial analysis</subject><subject>Eigenvectors</subject><subject>Generating functions</subject><subject>Geometric graphs</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Polynomials</subject><subject>Production matrices</subject><subject>Riordan Arrays</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANwicSVh13biVJxQxZ9UwQXOlu2sS6K2KXYK4u1xFM6cVrOa2R19jF0iFAhY3XTFxpiCA8ekC0BxxGZYK5FjXVbHbAbAZS7UojxlZzF2ACAV8Bm7fqHvbB_65uCGtt9lWzOE1lHMfB-yNfVbGnW2Dmb_Ec_ZiTebSBd_c87eH-7flk_56vXxeXm3yp3g5ZBb470TypJzshZGgmnACqeayqJEV_nSKmOdBK9EU0FNoKh2coHSAtWWxJxdTXdTsc8DxUF3_SHs0kvNK1wgR85lcuHkcqGPMZDX-9BuTfjRCHqEojudoOgRyrhKUFLmdspQqv_VUtDRtbRz1LSB3KCbvv0n_QuzmmmN</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Esteban, Guillermo</creator><creator>Huemer, Clemens</creator><creator>Silveira, Rodrigo I.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0751-7729</orcidid></search><sort><creationdate>20220115</creationdate><title>New production matrices for geometric graphs</title><author>Esteban, Guillermo ; Huemer, Clemens ; Silveira, Rodrigo I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characteristic polynomials</topic><topic>Combinatorial analysis</topic><topic>Eigenvectors</topic><topic>Generating functions</topic><topic>Geometric graphs</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Polynomials</topic><topic>Production matrices</topic><topic>Riordan Arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esteban, Guillermo</creatorcontrib><creatorcontrib>Huemer, Clemens</creatorcontrib><creatorcontrib>Silveira, Rodrigo I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteban, Guillermo</au><au>Huemer, Clemens</au><au>Silveira, Rodrigo I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New production matrices for geometric graphs</atitle><jtitle>Linear algebra and its applications</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>633</volume><spage>244</spage><epage>280</epage><pages>244-280</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.10.013</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-0751-7729</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2022-01, Vol.633, p.244-280 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2619121224 |
source | Elsevier |
subjects | Characteristic polynomials Combinatorial analysis Eigenvectors Generating functions Geometric graphs Graphs Linear algebra Polynomials Production matrices Riordan Arrays |
title | New production matrices for geometric graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20production%20matrices%20for%20geometric%20graphs&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Esteban,%20Guillermo&rft.date=2022-01-15&rft.volume=633&rft.spage=244&rft.epage=280&rft.pages=244-280&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.10.013&rft_dat=%3Cproquest_cross%3E2619121224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-baffc37becc483a40ad0b3c7d6b141c6f5b7abc40f73d608e07e8c4914b0e8be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619121224&rft_id=info:pmid/&rfr_iscdi=true |