Loading…
Finite presentation of the tame fundamental group
Let p be a prime number, and let k be an algebraically closed field of characteristic p . We show that the tame fundamental group of a smooth affine curve over k is a projective profinite group. We prove that the fundamental group of a smooth projective variety over k is finitely presented; more gen...
Saved in:
Published in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2022-05, Vol.28 (2), Article 37 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e8fc58c0cf108215edf14becff1542683dffb9d6c234bbddaa7ef7e1d62fb2893 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e8fc58c0cf108215edf14becff1542683dffb9d6c234bbddaa7ef7e1d62fb2893 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 28 |
creator | Esnault, Hélène Shusterman, Mark Srinivas, Vasudevan |
description | Let
p
be a prime number, and let
k
be an algebraically closed field of characteristic
p
. We show that the tame fundamental group of a smooth affine curve over
k
is a projective profinite group. We prove that the fundamental group of a smooth projective variety over
k
is finitely presented; more generally, the tame fundamental group of a smooth quasi-projective variety over
k
, which admits a good compactification, is finitely presented. |
doi_str_mv | 10.1007/s00029-021-00732-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619233682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619233682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e8fc58c0cf108215edf14becff1542683dffb9d6c234bbddaa7ef7e1d62fb2893</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZSdpNj7K4Kix40XNo82ftstvWJD347Y1W8ObpzTDvvYEfY9cItwiwuosAQDUHQp5XQVyesAVKAl4DwWmegYijInnOLmLcZ3tFBAuGm67vkivG4KLrU5O6oS8GX6R3V6Tm6Ao_9TZrPh2KXRim8ZKd-eYQ3dWvLtnb5uF1_cS3L4_P6_stNwLrxJ3yplQGjEdQhKWzHmXrjPdYSqqUsN63ta0MCdm21jbNyvmVQ1uRb0nVYslu5t4xDB-Ti0nvhyn0-aWmCmsSolKUXTS7TBhiDM7rMXTHJnxqBP2NRs9odEajf9BomUNiDsVs7ncu_FX_k_oCVRRmvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619233682</pqid></control><display><type>article</type><title>Finite presentation of the tame fundamental group</title><source>Springer Link</source><creator>Esnault, Hélène ; Shusterman, Mark ; Srinivas, Vasudevan</creator><creatorcontrib>Esnault, Hélène ; Shusterman, Mark ; Srinivas, Vasudevan</creatorcontrib><description>Let
p
be a prime number, and let
k
be an algebraically closed field of characteristic
p
. We show that the tame fundamental group of a smooth affine curve over
k
is a projective profinite group. We prove that the fundamental group of a smooth projective variety over
k
is finitely presented; more generally, the tame fundamental group of a smooth quasi-projective variety over
k
, which admits a good compactification, is finitely presented.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-021-00732-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Prime numbers</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2022-05, Vol.28 (2), Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e8fc58c0cf108215edf14becff1542683dffb9d6c234bbddaa7ef7e1d62fb2893</citedby><cites>FETCH-LOGICAL-c319t-e8fc58c0cf108215edf14becff1542683dffb9d6c234bbddaa7ef7e1d62fb2893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Esnault, Hélène</creatorcontrib><creatorcontrib>Shusterman, Mark</creatorcontrib><creatorcontrib>Srinivas, Vasudevan</creatorcontrib><title>Finite presentation of the tame fundamental group</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>Let
p
be a prime number, and let
k
be an algebraically closed field of characteristic
p
. We show that the tame fundamental group of a smooth affine curve over
k
is a projective profinite group. We prove that the fundamental group of a smooth projective variety over
k
is finitely presented; more generally, the tame fundamental group of a smooth quasi-projective variety over
k
, which admits a good compactification, is finitely presented.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Prime numbers</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZSdpNj7K4Kix40XNo82ftstvWJD347Y1W8ObpzTDvvYEfY9cItwiwuosAQDUHQp5XQVyesAVKAl4DwWmegYijInnOLmLcZ3tFBAuGm67vkivG4KLrU5O6oS8GX6R3V6Tm6Ao_9TZrPh2KXRim8ZKd-eYQ3dWvLtnb5uF1_cS3L4_P6_stNwLrxJ3yplQGjEdQhKWzHmXrjPdYSqqUsN63ta0MCdm21jbNyvmVQ1uRb0nVYslu5t4xDB-Ti0nvhyn0-aWmCmsSolKUXTS7TBhiDM7rMXTHJnxqBP2NRs9odEajf9BomUNiDsVs7ncu_FX_k_oCVRRmvA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Esnault, Hélène</creator><creator>Shusterman, Mark</creator><creator>Srinivas, Vasudevan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Finite presentation of the tame fundamental group</title><author>Esnault, Hélène ; Shusterman, Mark ; Srinivas, Vasudevan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e8fc58c0cf108215edf14becff1542683dffb9d6c234bbddaa7ef7e1d62fb2893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Prime numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esnault, Hélène</creatorcontrib><creatorcontrib>Shusterman, Mark</creatorcontrib><creatorcontrib>Srinivas, Vasudevan</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esnault, Hélène</au><au>Shusterman, Mark</au><au>Srinivas, Vasudevan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite presentation of the tame fundamental group</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>28</volume><issue>2</issue><artnum>37</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>Let
p
be a prime number, and let
k
be an algebraically closed field of characteristic
p
. We show that the tame fundamental group of a smooth affine curve over
k
is a projective profinite group. We prove that the fundamental group of a smooth projective variety over
k
is finitely presented; more generally, the tame fundamental group of a smooth quasi-projective variety over
k
, which admits a good compactification, is finitely presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-021-00732-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2022-05, Vol.28 (2), Article 37 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_proquest_journals_2619233682 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics Prime numbers |
title | Finite presentation of the tame fundamental group |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20presentation%20of%20the%20tame%20fundamental%20group&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Esnault,%20H%C3%A9l%C3%A8ne&rft.date=2022-05-01&rft.volume=28&rft.issue=2&rft.artnum=37&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-021-00732-4&rft_dat=%3Cproquest_cross%3E2619233682%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e8fc58c0cf108215edf14becff1542683dffb9d6c234bbddaa7ef7e1d62fb2893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619233682&rft_id=info:pmid/&rfr_iscdi=true |