Loading…
Parallel hesitant fuzzy C-means algorithm to image segmentation
Hesitant fuzzy information allows clustering data with multiple possible membership values for a single item in a reference set. Hesitant fuzzy sets have been applied in many decision-making problems, obtaining better results against others kinds of fuzzy sets. So, in this paper a method for image s...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2022-02, Vol.16 (1), p.73-81 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hesitant fuzzy information allows clustering data with multiple possible membership values for a single item in a reference set. Hesitant fuzzy sets have been applied in many decision-making problems, obtaining better results against others kinds of fuzzy sets. So, in this paper a method for image segmentation based on the hesitant fuzzy set theory is investigated. Additionally, processing time is sped up with a hardware-level parallelization technique using OpenMP. Comparing the experimental results, it can be seen that the segmentation by the propose algorithm is superior, compared to some of the state of the art. The most striking feature to emerge from this algorithm is its ability to preserve the details of the boundaries of the region, in addition to the fact that the regions are more homogeneous. |
---|---|
ISSN: | 1863-1703 1863-1711 |
DOI: | 10.1007/s11760-021-01957-8 |