Loading…
On Planar Holomorphic Systems
Planar holomorphic systems \(\dot{x}=u(x,y)\), \(\dot{y}=v(x,y)\) are those that \(u=\operatorname{Re}(f)\) and \(v=\operatorname{Im}(f)\) for some holomorphic function \(f(z)\). They have important dynamical properties, highlighting, for example, the fact that they do not have limit cycles and that...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gouveia, L F S Rondón, G da Silva, P R |
description | Planar holomorphic systems \(\dot{x}=u(x,y)\), \(\dot{y}=v(x,y)\) are those that \(u=\operatorname{Re}(f)\) and \(v=\operatorname{Im}(f)\) for some holomorphic function \(f(z)\). They have important dynamical properties, highlighting, for example, the fact that they do not have limit cycles and that center-focus problem is trivial. In particular, the hypothesis that a polynomial system is holomorphic reduces the number of parameters of the system. Although a polynomial system of degree \(n\) depends on \(n^2 +3n+2\) parameters, a polynomial holomorphic depends only on \(2n + 2\) parameters. In this work, in addition to making a general overview of the theory of holomorphic systems, we classify all the possible global phase portraits, on the Poincar\'{e} disk, of systems \(\dot{z}=f(z)\) and \(\dot{z}=1/f(z)\), where \(f(z)\) is a polynomial of degree \(2\), \(3\) and \(4\) in the variable \(z\in \mathbb{C}\). We also classify all the possible global phase portraits of Moebius systems \(\dot{z}=\frac{Az+B}{Cz+D}\), where \(A,B,C,D\in\mathbb{C}, AD-BC\neq0\). Finally, we obtain explicit expressions of first integrals of holomorphic systems and of conjugated holomorphic systems, which have important applications in the study of fluid dynamics. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2619341930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619341930</sourcerecordid><originalsourceid>FETCH-proquest_journals_26193419303</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9c9TCMhJzEssUvDIz8nPzS8qyMhMVgiuLC5JzS3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzNDS2MTIDYwJk4VAFBlK-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619341930</pqid></control><display><type>article</type><title>On Planar Holomorphic Systems</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gouveia, L F S ; Rondón, G ; da Silva, P R</creator><creatorcontrib>Gouveia, L F S ; Rondón, G ; da Silva, P R</creatorcontrib><description>Planar holomorphic systems \(\dot{x}=u(x,y)\), \(\dot{y}=v(x,y)\) are those that \(u=\operatorname{Re}(f)\) and \(v=\operatorname{Im}(f)\) for some holomorphic function \(f(z)\). They have important dynamical properties, highlighting, for example, the fact that they do not have limit cycles and that center-focus problem is trivial. In particular, the hypothesis that a polynomial system is holomorphic reduces the number of parameters of the system. Although a polynomial system of degree \(n\) depends on \(n^2 +3n+2\) parameters, a polynomial holomorphic depends only on \(2n + 2\) parameters. In this work, in addition to making a general overview of the theory of holomorphic systems, we classify all the possible global phase portraits, on the Poincar\'{e} disk, of systems \(\dot{z}=f(z)\) and \(\dot{z}=1/f(z)\), where \(f(z)\) is a polynomial of degree \(2\), \(3\) and \(4\) in the variable \(z\in \mathbb{C}\). We also classify all the possible global phase portraits of Moebius systems \(\dot{z}=\frac{Az+B}{Cz+D}\), where \(A,B,C,D\in\mathbb{C}, AD-BC\neq0\). Finally, we obtain explicit expressions of first integrals of holomorphic systems and of conjugated holomorphic systems, which have important applications in the study of fluid dynamics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Classification ; Fluid dynamics ; Mathematical analysis ; Parameters ; Polynomials</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2619341930?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gouveia, L F S</creatorcontrib><creatorcontrib>Rondón, G</creatorcontrib><creatorcontrib>da Silva, P R</creatorcontrib><title>On Planar Holomorphic Systems</title><title>arXiv.org</title><description>Planar holomorphic systems \(\dot{x}=u(x,y)\), \(\dot{y}=v(x,y)\) are those that \(u=\operatorname{Re}(f)\) and \(v=\operatorname{Im}(f)\) for some holomorphic function \(f(z)\). They have important dynamical properties, highlighting, for example, the fact that they do not have limit cycles and that center-focus problem is trivial. In particular, the hypothesis that a polynomial system is holomorphic reduces the number of parameters of the system. Although a polynomial system of degree \(n\) depends on \(n^2 +3n+2\) parameters, a polynomial holomorphic depends only on \(2n + 2\) parameters. In this work, in addition to making a general overview of the theory of holomorphic systems, we classify all the possible global phase portraits, on the Poincar\'{e} disk, of systems \(\dot{z}=f(z)\) and \(\dot{z}=1/f(z)\), where \(f(z)\) is a polynomial of degree \(2\), \(3\) and \(4\) in the variable \(z\in \mathbb{C}\). We also classify all the possible global phase portraits of Moebius systems \(\dot{z}=\frac{Az+B}{Cz+D}\), where \(A,B,C,D\in\mathbb{C}, AD-BC\neq0\). Finally, we obtain explicit expressions of first integrals of holomorphic systems and of conjugated holomorphic systems, which have important applications in the study of fluid dynamics.</description><subject>Analytic functions</subject><subject>Classification</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9c9TCMhJzEssUvDIz8nPzS8qyMhMVgiuLC5JzS3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzNDS2MTIDYwJk4VAFBlK-U</recordid><startdate>20220111</startdate><enddate>20220111</enddate><creator>Gouveia, L F S</creator><creator>Rondón, G</creator><creator>da Silva, P R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220111</creationdate><title>On Planar Holomorphic Systems</title><author>Gouveia, L F S ; Rondón, G ; da Silva, P R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26193419303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytic functions</topic><topic>Classification</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Gouveia, L F S</creatorcontrib><creatorcontrib>Rondón, G</creatorcontrib><creatorcontrib>da Silva, P R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouveia, L F S</au><au>Rondón, G</au><au>da Silva, P R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Planar Holomorphic Systems</atitle><jtitle>arXiv.org</jtitle><date>2022-01-11</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Planar holomorphic systems \(\dot{x}=u(x,y)\), \(\dot{y}=v(x,y)\) are those that \(u=\operatorname{Re}(f)\) and \(v=\operatorname{Im}(f)\) for some holomorphic function \(f(z)\). They have important dynamical properties, highlighting, for example, the fact that they do not have limit cycles and that center-focus problem is trivial. In particular, the hypothesis that a polynomial system is holomorphic reduces the number of parameters of the system. Although a polynomial system of degree \(n\) depends on \(n^2 +3n+2\) parameters, a polynomial holomorphic depends only on \(2n + 2\) parameters. In this work, in addition to making a general overview of the theory of holomorphic systems, we classify all the possible global phase portraits, on the Poincar\'{e} disk, of systems \(\dot{z}=f(z)\) and \(\dot{z}=1/f(z)\), where \(f(z)\) is a polynomial of degree \(2\), \(3\) and \(4\) in the variable \(z\in \mathbb{C}\). We also classify all the possible global phase portraits of Moebius systems \(\dot{z}=\frac{Az+B}{Cz+D}\), where \(A,B,C,D\in\mathbb{C}, AD-BC\neq0\). Finally, we obtain explicit expressions of first integrals of holomorphic systems and of conjugated holomorphic systems, which have important applications in the study of fluid dynamics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2619341930 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Analytic functions Classification Fluid dynamics Mathematical analysis Parameters Polynomials |
title | On Planar Holomorphic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Planar%20Holomorphic%20Systems&rft.jtitle=arXiv.org&rft.au=Gouveia,%20L%20F%20S&rft.date=2022-01-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2619341930%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26193419303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619341930&rft_id=info:pmid/&rfr_iscdi=true |