Loading…

Properties Investigation of Epoxidized Sunflower Oil as Bioplasticizer for Poly (Lactic Acid)

This study aims to improve low intrinsic ductility of poly (lactic acid) (PLA) by using a novel bio-sourced plasticizer environmentally friendly and cost-effective and to get a fully biodegradable material with potential application in films manufacturing. For that purpose, commercial sunflower oil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymers and the environment 2022, Vol.30 (1), p.232-245
Main Authors: Bouti, Mohamed, Irinislimane, Ratiba, Belhaneche-Bensemra, Naima
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to improve low intrinsic ductility of poly (lactic acid) (PLA) by using a novel bio-sourced plasticizer environmentally friendly and cost-effective and to get a fully biodegradable material with potential application in films manufacturing. For that purpose, commercial sunflower oil (SO) was epoxidized and epoxidized sunflower oil (ESO) was used as plasticizer for PLA. To investigate ESO potential as plasticizer for PLA, its plasticizing effect was compared with commercial epoxidized soya bean oil (ESBO). Bioblends based on PLA and epoxidized vegetable oils (EVO) as bioplasticizers were prepared. The plasticizers (ESO or ESBO) were respectively compounded with PLA at 10, 20, 30, and 40 wt%. Mechanical (tensile and Shore D hardness), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) and morphological properties (optical microscopy and scanning electron microscopy (SEM)) were characterized. The results showed that the addition of ESO or ESBO to PLA decreased tensile strength and tensile modulus compared to neat PLA but increased elongation at break for which an optimum (9 %, 16 and 34 % for ESBO, ESO 5.5 % and ESO 6.5 % respectively) was reached at a content of 20 wt% of plasticizer. The structures of the obtained plasticized PLA were confirmed by FTIR spectroscopy. The thermal properties (DSC), such as glass transition temperature (T g ) and melting temperature (T m ) were slightly decreased by addition of plasticizer into PLA, indicating that plasticizer increases the chain mobility and SEM analysis proved successful modification on the PLA brittle morphology with addition of EVO. On the other hand, TGA results revealed increase in the thermal stability. Also the results showed the effect of the EVO weight and the epoxy content (O.O value) on the improvement of the properties of PLA. ESO 6.5 % at 20wt% was an efficient plasticizer for PLA.
ISSN:1566-2543
1572-8919
DOI:10.1007/s10924-021-02194-3