Loading…

In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries

[Display omitted] •APTES, citrate, and glycerol are used for the formation of N-doped carbon/SiOC.•Two different NC/SiOC materials are evaluated as anode active material.•The sphere-like NC-SiOC composite electrode improves the gravimetric capacity.•The composite with the higher content of carbon an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2021-11, Vol.901, p.115732, Article 115732
Main Authors: Monje, Ivonne E., Sanchez-Ramirez, Nedher, Santagneli, Silvia H., Camargo, Pedro H., Bélanger, Daniel, Schougaard, Steen B., Torresi, Roberto M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-d6413013f4ba50bf6af96f0b866064762734480677667ef81b033859c142a3cb3
cites cdi_FETCH-LOGICAL-c388t-d6413013f4ba50bf6af96f0b866064762734480677667ef81b033859c142a3cb3
container_end_page
container_issue
container_start_page 115732
container_title Journal of electroanalytical chemistry (Lausanne, Switzerland)
container_volume 901
creator Monje, Ivonne E.
Sanchez-Ramirez, Nedher
Santagneli, Silvia H.
Camargo, Pedro H.
Bélanger, Daniel
Schougaard, Steen B.
Torresi, Roberto M.
description [Display omitted] •APTES, citrate, and glycerol are used for the formation of N-doped carbon/SiOC.•Two different NC/SiOC materials are evaluated as anode active material.•The sphere-like NC-SiOC composite electrode improves the gravimetric capacity.•The composite with the higher content of carbon and N shows 98% of capacity retention. The development of negative electrode materials with better performance than those currently used in Li-ion technology has been a major focus of recent battery research. Here, we report the synthesis and electrochemical evaluation of in situ-formed nitrogen-doped carbon/SiOC. The materials were synthesized by a sol–gel process using 3-(aminopropyl)triethoxysilane (APTES), sodium citrate and glycerol. The electrochemical performance of pyrolyzed materials was studied using poly(acrylic acid) binder and commercial organic electrolyte. Our reported approach enables changes in both the amount of nitrogen and the morphology as a function of the molar ratio of APTES:citrate and reaction time. Spherical-shaped NC/SiOC composite electrodes deliver a delithiation capacity of 622 mAh/g at 0.1 A/g and an initial coulombic efficiency of ∼63%, while in the large bulk material, respective values of 367 mAh/g and ∼55% were obtained. After 1000 charge/discharge cycles at 1.6 A/g, the latter material exhibits 98% of the initial capacity once it returned to lower current cycling. Overall, our results indicate that NC/SiOC materials are quite promising for electrochemical applications since both their large capacity and stability demonstrate superior performance compared to traditional graphite. Moreover, our synthesis is simple and, more importantly, environmentally friendly chemicals, such as sodium citrate and glycerol, are used.
doi_str_mv 10.1016/j.jelechem.2021.115732
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619670869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S157266572100758X</els_id><sourcerecordid>2619670869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d6413013f4ba50bf6af96f0b866064762734480677667ef81b033859c142a3cb3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFb_gix4Ts3H7iR7U4ofhYIXPYdsdrbN0k1qshX896ZUz54mE-Z5J3mK4pbRBaMM7ofFgDu0WxwXnHK2YKyWgp8VM6akILyG5jyfa8kJQC0vi6uUBkq5UozPinHly-SmA-lDHLErvZti2KAnXdjn1prYBn-f3M7Z4ElrUr4czYTRmV0qTSo9bszkvrA8viGzHaYyZ5U7N23dYSQu-LI105HAdF1c9JnDm986Lz6en96Xr2T99rJaPq6JFUpNpIOKCcpEX7Wmpm0Ppm-gp60CoFBJ4FJUlaIgJYDEXrGWCqHqxrKKG2FbMS_uTrn7GD4PmCY9hEP0eaXmwBqQVEGTp-A0ZWNIKWKv99GNJn5rRvVRrR70n1p9VKtPajP4cAIx_-HLYdTJOvQWOxezBN0F91_EDxvAheE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619670869</pqid></control><display><type>article</type><title>In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries</title><source>ScienceDirect Freedom Collection</source><creator>Monje, Ivonne E. ; Sanchez-Ramirez, Nedher ; Santagneli, Silvia H. ; Camargo, Pedro H. ; Bélanger, Daniel ; Schougaard, Steen B. ; Torresi, Roberto M.</creator><creatorcontrib>Monje, Ivonne E. ; Sanchez-Ramirez, Nedher ; Santagneli, Silvia H. ; Camargo, Pedro H. ; Bélanger, Daniel ; Schougaard, Steen B. ; Torresi, Roberto M.</creatorcontrib><description>[Display omitted] •APTES, citrate, and glycerol are used for the formation of N-doped carbon/SiOC.•Two different NC/SiOC materials are evaluated as anode active material.•The sphere-like NC-SiOC composite electrode improves the gravimetric capacity.•The composite with the higher content of carbon and N shows 98% of capacity retention. The development of negative electrode materials with better performance than those currently used in Li-ion technology has been a major focus of recent battery research. Here, we report the synthesis and electrochemical evaluation of in situ-formed nitrogen-doped carbon/SiOC. The materials were synthesized by a sol–gel process using 3-(aminopropyl)triethoxysilane (APTES), sodium citrate and glycerol. The electrochemical performance of pyrolyzed materials was studied using poly(acrylic acid) binder and commercial organic electrolyte. Our reported approach enables changes in both the amount of nitrogen and the morphology as a function of the molar ratio of APTES:citrate and reaction time. Spherical-shaped NC/SiOC composite electrodes deliver a delithiation capacity of 622 mAh/g at 0.1 A/g and an initial coulombic efficiency of ∼63%, while in the large bulk material, respective values of 367 mAh/g and ∼55% were obtained. After 1000 charge/discharge cycles at 1.6 A/g, the latter material exhibits 98% of the initial capacity once it returned to lower current cycling. Overall, our results indicate that NC/SiOC materials are quite promising for electrochemical applications since both their large capacity and stability demonstrate superior performance compared to traditional graphite. Moreover, our synthesis is simple and, more importantly, environmentally friendly chemicals, such as sodium citrate and glycerol, are used.</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2021.115732</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon ; Electrochemical analysis ; Electrode materials ; Glycerol ; Lithium-ion batteries ; Negative electrode ; Nitrogen ; Nitrogen-doped carbon ; Nonaqueous electrolytes ; Polyacrylic acid ; Reaction time ; Rechargeable batteries ; Silicon oxide ; Silicon oxycarbide ; Sodium citrate ; Sol-gel processes ; Synthesis</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2021-11, Vol.901, p.115732, Article 115732</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d6413013f4ba50bf6af96f0b866064762734480677667ef81b033859c142a3cb3</citedby><cites>FETCH-LOGICAL-c388t-d6413013f4ba50bf6af96f0b866064762734480677667ef81b033859c142a3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Monje, Ivonne E.</creatorcontrib><creatorcontrib>Sanchez-Ramirez, Nedher</creatorcontrib><creatorcontrib>Santagneli, Silvia H.</creatorcontrib><creatorcontrib>Camargo, Pedro H.</creatorcontrib><creatorcontrib>Bélanger, Daniel</creatorcontrib><creatorcontrib>Schougaard, Steen B.</creatorcontrib><creatorcontrib>Torresi, Roberto M.</creatorcontrib><title>In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>[Display omitted] •APTES, citrate, and glycerol are used for the formation of N-doped carbon/SiOC.•Two different NC/SiOC materials are evaluated as anode active material.•The sphere-like NC-SiOC composite electrode improves the gravimetric capacity.•The composite with the higher content of carbon and N shows 98% of capacity retention. The development of negative electrode materials with better performance than those currently used in Li-ion technology has been a major focus of recent battery research. Here, we report the synthesis and electrochemical evaluation of in situ-formed nitrogen-doped carbon/SiOC. The materials were synthesized by a sol–gel process using 3-(aminopropyl)triethoxysilane (APTES), sodium citrate and glycerol. The electrochemical performance of pyrolyzed materials was studied using poly(acrylic acid) binder and commercial organic electrolyte. Our reported approach enables changes in both the amount of nitrogen and the morphology as a function of the molar ratio of APTES:citrate and reaction time. Spherical-shaped NC/SiOC composite electrodes deliver a delithiation capacity of 622 mAh/g at 0.1 A/g and an initial coulombic efficiency of ∼63%, while in the large bulk material, respective values of 367 mAh/g and ∼55% were obtained. After 1000 charge/discharge cycles at 1.6 A/g, the latter material exhibits 98% of the initial capacity once it returned to lower current cycling. Overall, our results indicate that NC/SiOC materials are quite promising for electrochemical applications since both their large capacity and stability demonstrate superior performance compared to traditional graphite. Moreover, our synthesis is simple and, more importantly, environmentally friendly chemicals, such as sodium citrate and glycerol, are used.</description><subject>Carbon</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Glycerol</subject><subject>Lithium-ion batteries</subject><subject>Negative electrode</subject><subject>Nitrogen</subject><subject>Nitrogen-doped carbon</subject><subject>Nonaqueous electrolytes</subject><subject>Polyacrylic acid</subject><subject>Reaction time</subject><subject>Rechargeable batteries</subject><subject>Silicon oxide</subject><subject>Silicon oxycarbide</subject><subject>Sodium citrate</subject><subject>Sol-gel processes</subject><subject>Synthesis</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFb_gix4Ts3H7iR7U4ofhYIXPYdsdrbN0k1qshX896ZUz54mE-Z5J3mK4pbRBaMM7ofFgDu0WxwXnHK2YKyWgp8VM6akILyG5jyfa8kJQC0vi6uUBkq5UozPinHly-SmA-lDHLErvZti2KAnXdjn1prYBn-f3M7Z4ElrUr4czYTRmV0qTSo9bszkvrA8viGzHaYyZ5U7N23dYSQu-LI105HAdF1c9JnDm986Lz6en96Xr2T99rJaPq6JFUpNpIOKCcpEX7Wmpm0Ppm-gp60CoFBJ4FJUlaIgJYDEXrGWCqHqxrKKG2FbMS_uTrn7GD4PmCY9hEP0eaXmwBqQVEGTp-A0ZWNIKWKv99GNJn5rRvVRrR70n1p9VKtPajP4cAIx_-HLYdTJOvQWOxezBN0F91_EDxvAheE</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Monje, Ivonne E.</creator><creator>Sanchez-Ramirez, Nedher</creator><creator>Santagneli, Silvia H.</creator><creator>Camargo, Pedro H.</creator><creator>Bélanger, Daniel</creator><creator>Schougaard, Steen B.</creator><creator>Torresi, Roberto M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211115</creationdate><title>In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries</title><author>Monje, Ivonne E. ; Sanchez-Ramirez, Nedher ; Santagneli, Silvia H. ; Camargo, Pedro H. ; Bélanger, Daniel ; Schougaard, Steen B. ; Torresi, Roberto M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d6413013f4ba50bf6af96f0b866064762734480677667ef81b033859c142a3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Glycerol</topic><topic>Lithium-ion batteries</topic><topic>Negative electrode</topic><topic>Nitrogen</topic><topic>Nitrogen-doped carbon</topic><topic>Nonaqueous electrolytes</topic><topic>Polyacrylic acid</topic><topic>Reaction time</topic><topic>Rechargeable batteries</topic><topic>Silicon oxide</topic><topic>Silicon oxycarbide</topic><topic>Sodium citrate</topic><topic>Sol-gel processes</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monje, Ivonne E.</creatorcontrib><creatorcontrib>Sanchez-Ramirez, Nedher</creatorcontrib><creatorcontrib>Santagneli, Silvia H.</creatorcontrib><creatorcontrib>Camargo, Pedro H.</creatorcontrib><creatorcontrib>Bélanger, Daniel</creatorcontrib><creatorcontrib>Schougaard, Steen B.</creatorcontrib><creatorcontrib>Torresi, Roberto M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monje, Ivonne E.</au><au>Sanchez-Ramirez, Nedher</au><au>Santagneli, Silvia H.</au><au>Camargo, Pedro H.</au><au>Bélanger, Daniel</au><au>Schougaard, Steen B.</au><au>Torresi, Roberto M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>901</volume><spage>115732</spage><pages>115732-</pages><artnum>115732</artnum><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>[Display omitted] •APTES, citrate, and glycerol are used for the formation of N-doped carbon/SiOC.•Two different NC/SiOC materials are evaluated as anode active material.•The sphere-like NC-SiOC composite electrode improves the gravimetric capacity.•The composite with the higher content of carbon and N shows 98% of capacity retention. The development of negative electrode materials with better performance than those currently used in Li-ion technology has been a major focus of recent battery research. Here, we report the synthesis and electrochemical evaluation of in situ-formed nitrogen-doped carbon/SiOC. The materials were synthesized by a sol–gel process using 3-(aminopropyl)triethoxysilane (APTES), sodium citrate and glycerol. The electrochemical performance of pyrolyzed materials was studied using poly(acrylic acid) binder and commercial organic electrolyte. Our reported approach enables changes in both the amount of nitrogen and the morphology as a function of the molar ratio of APTES:citrate and reaction time. Spherical-shaped NC/SiOC composite electrodes deliver a delithiation capacity of 622 mAh/g at 0.1 A/g and an initial coulombic efficiency of ∼63%, while in the large bulk material, respective values of 367 mAh/g and ∼55% were obtained. After 1000 charge/discharge cycles at 1.6 A/g, the latter material exhibits 98% of the initial capacity once it returned to lower current cycling. Overall, our results indicate that NC/SiOC materials are quite promising for electrochemical applications since both their large capacity and stability demonstrate superior performance compared to traditional graphite. Moreover, our synthesis is simple and, more importantly, environmentally friendly chemicals, such as sodium citrate and glycerol, are used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2021.115732</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1572-6657
ispartof Journal of electroanalytical chemistry (Lausanne, Switzerland), 2021-11, Vol.901, p.115732, Article 115732
issn 1572-6657
1873-2569
language eng
recordid cdi_proquest_journals_2619670869
source ScienceDirect Freedom Collection
subjects Carbon
Electrochemical analysis
Electrode materials
Glycerol
Lithium-ion batteries
Negative electrode
Nitrogen
Nitrogen-doped carbon
Nonaqueous electrolytes
Polyacrylic acid
Reaction time
Rechargeable batteries
Silicon oxide
Silicon oxycarbide
Sodium citrate
Sol-gel processes
Synthesis
title In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ-formed%20nitrogen-doped%20carbon/silicon-based%20materials%20as%20negative%20electrodes%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Monje,%20Ivonne%20E.&rft.date=2021-11-15&rft.volume=901&rft.spage=115732&rft.pages=115732-&rft.artnum=115732&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2021.115732&rft_dat=%3Cproquest_cross%3E2619670869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d6413013f4ba50bf6af96f0b866064762734480677667ef81b033859c142a3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619670869&rft_id=info:pmid/&rfr_iscdi=true