Loading…

Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe

When integrating the gravity heat pipe with solar collector, the diameters of the evaporator and condenser are usually unequal, namely unequal diameter gravity heat pipe (UDGHP). Compared with the equal diameter gravity heat pipe (EDGHP), there are few studies focusing on operating pattern of the UD...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2022-01, Vol.238, p.121950, Article 121950
Main Authors: Zhang, Tao, Cai, Jingyong, Wang, Liuya, Meng, Qingliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-cb1cc8bd97e8770a9c9a069ae6c3b6ddef16951a915a07de054236980e4707183
cites cdi_FETCH-LOGICAL-c334t-cb1cc8bd97e8770a9c9a069ae6c3b6ddef16951a915a07de054236980e4707183
container_end_page
container_issue
container_start_page 121950
container_title Energy (Oxford)
container_volume 238
creator Zhang, Tao
Cai, Jingyong
Wang, Liuya
Meng, Qingliang
description When integrating the gravity heat pipe with solar collector, the diameters of the evaporator and condenser are usually unequal, namely unequal diameter gravity heat pipe (UDGHP). Compared with the equal diameter gravity heat pipe (EDGHP), there are few studies focusing on operating pattern of the UDGHP. In this work, a numerical model for the UDGHP is firstly developed based on that of the EDGHP. Sensitivity analysis of the geometries of the evaporator and condenser, wall temperature, and working fluid on the filling and operating envelopes and the thermal resistance of the UDGHP is carried out under the criteria of local dryout and flooding limit. Particularly, comparisons between the UDGHP and EDGHP are simultaneously presented and discussed. The results reveal that the UDGHP has the expanded filling and operating envelopes and a smaller thermal resistance. Enlarging the inner diameter of the condenser, shortening the length of the evaporator, and raising the wall temperature can effectively improve the filling and operating envelopes and the heat transfer performance; lengthening the condenser improves the operating envelope and the heat transfer performance but shrinks the filling envelope. Variation patterns in the filling and operating envelopes and the thermal performance with different working fluids are disorders. •A numerical model constrained by two operating limits for the UDGHP is developed.•Effects of geometries on the filling and operating envelopes are sensitively analyzed.•Sensitivity analysis of geometries on the thermal resistance are explored and discussed.•Heat transfer patterns of the UDGHP and EDGHP are compared and discussed.•The appreciated condenser length and working fluids are suggested.
doi_str_mv 10.1016/j.energy.2021.121950
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619672294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221021988</els_id><sourcerecordid>2619672294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cb1cc8bd97e8770a9c9a069ae6c3b6ddef16951a915a07de054236980e4707183</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKv_wEPAq7sm-5FsLoIUv6DgRc9hmp1tU7abNUkr_TX-Vbdub4KnYZj3mXeSl5BrzlLOuLhbp9ihX-7TjGU85RlXJTshE17JPBGyKk_JhOWCJWVRZOfkIoQ1Y6yslJqQ75nb9OAh2h1S6GoasAv22EG7DzZQ19G4QtrYtrXd8pa6Hg9At_wFhqZxfgOdQdpDjOi7QBcYvxBHLrgWPF162Nm4pyuESHvbj26HefRQD45usPuruiRnDbQBr451Sj6eHt9nL8n87fl19jBPTJ4XMTELbky1qJXESkoGyihgQgEKky9EXWPDhSo5KF4CkzWysshyoSqGhWSSV_mU3Ix7e-8-txiiXrutH04KOhNcCZllqhhUxagy3oXgsdG9txvwe82ZPkSh13qMQh-i0GMUA3Y_Yji8YGfR62AsDh9WW48m6trZ_xf8ALzXl50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619672294</pqid></control><display><type>article</type><title>Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Tao ; Cai, Jingyong ; Wang, Liuya ; Meng, Qingliang</creator><creatorcontrib>Zhang, Tao ; Cai, Jingyong ; Wang, Liuya ; Meng, Qingliang</creatorcontrib><description>When integrating the gravity heat pipe with solar collector, the diameters of the evaporator and condenser are usually unequal, namely unequal diameter gravity heat pipe (UDGHP). Compared with the equal diameter gravity heat pipe (EDGHP), there are few studies focusing on operating pattern of the UDGHP. In this work, a numerical model for the UDGHP is firstly developed based on that of the EDGHP. Sensitivity analysis of the geometries of the evaporator and condenser, wall temperature, and working fluid on the filling and operating envelopes and the thermal resistance of the UDGHP is carried out under the criteria of local dryout and flooding limit. Particularly, comparisons between the UDGHP and EDGHP are simultaneously presented and discussed. The results reveal that the UDGHP has the expanded filling and operating envelopes and a smaller thermal resistance. Enlarging the inner diameter of the condenser, shortening the length of the evaporator, and raising the wall temperature can effectively improve the filling and operating envelopes and the heat transfer performance; lengthening the condenser improves the operating envelope and the heat transfer performance but shrinks the filling envelope. Variation patterns in the filling and operating envelopes and the thermal performance with different working fluids are disorders. •A numerical model constrained by two operating limits for the UDGHP is developed.•Effects of geometries on the filling and operating envelopes are sensitively analyzed.•Sensitivity analysis of geometries on the thermal resistance are explored and discussed.•Heat transfer patterns of the UDGHP and EDGHP are compared and discussed.•The appreciated condenser length and working fluids are suggested.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.121950</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Envelopes ; Evaporation ; Evaporators ; Filling envelope ; Flooding ; Gravity ; Heat ; Heat pipes ; Heat transfer ; Mathematical models ; Numerical models ; Operating envelope ; Sensitivity analysis ; Solar collectors ; Solar gravity heat pipe ; Thermal energy ; Thermal resistance ; Wall temperature ; Working fluids</subject><ispartof>Energy (Oxford), 2022-01, Vol.238, p.121950, Article 121950</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cb1cc8bd97e8770a9c9a069ae6c3b6ddef16951a915a07de054236980e4707183</citedby><cites>FETCH-LOGICAL-c334t-cb1cc8bd97e8770a9c9a069ae6c3b6ddef16951a915a07de054236980e4707183</cites><orcidid>0000-0001-9342-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Cai, Jingyong</creatorcontrib><creatorcontrib>Wang, Liuya</creatorcontrib><creatorcontrib>Meng, Qingliang</creatorcontrib><title>Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe</title><title>Energy (Oxford)</title><description>When integrating the gravity heat pipe with solar collector, the diameters of the evaporator and condenser are usually unequal, namely unequal diameter gravity heat pipe (UDGHP). Compared with the equal diameter gravity heat pipe (EDGHP), there are few studies focusing on operating pattern of the UDGHP. In this work, a numerical model for the UDGHP is firstly developed based on that of the EDGHP. Sensitivity analysis of the geometries of the evaporator and condenser, wall temperature, and working fluid on the filling and operating envelopes and the thermal resistance of the UDGHP is carried out under the criteria of local dryout and flooding limit. Particularly, comparisons between the UDGHP and EDGHP are simultaneously presented and discussed. The results reveal that the UDGHP has the expanded filling and operating envelopes and a smaller thermal resistance. Enlarging the inner diameter of the condenser, shortening the length of the evaporator, and raising the wall temperature can effectively improve the filling and operating envelopes and the heat transfer performance; lengthening the condenser improves the operating envelope and the heat transfer performance but shrinks the filling envelope. Variation patterns in the filling and operating envelopes and the thermal performance with different working fluids are disorders. •A numerical model constrained by two operating limits for the UDGHP is developed.•Effects of geometries on the filling and operating envelopes are sensitively analyzed.•Sensitivity analysis of geometries on the thermal resistance are explored and discussed.•Heat transfer patterns of the UDGHP and EDGHP are compared and discussed.•The appreciated condenser length and working fluids are suggested.</description><subject>Envelopes</subject><subject>Evaporation</subject><subject>Evaporators</subject><subject>Filling envelope</subject><subject>Flooding</subject><subject>Gravity</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Operating envelope</subject><subject>Sensitivity analysis</subject><subject>Solar collectors</subject><subject>Solar gravity heat pipe</subject><subject>Thermal energy</subject><subject>Thermal resistance</subject><subject>Wall temperature</subject><subject>Working fluids</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhoMoWKv_wEPAq7sm-5FsLoIUv6DgRc9hmp1tU7abNUkr_TX-Vbdub4KnYZj3mXeSl5BrzlLOuLhbp9ihX-7TjGU85RlXJTshE17JPBGyKk_JhOWCJWVRZOfkIoQ1Y6yslJqQ75nb9OAh2h1S6GoasAv22EG7DzZQ19G4QtrYtrXd8pa6Hg9At_wFhqZxfgOdQdpDjOi7QBcYvxBHLrgWPF162Nm4pyuESHvbj26HefRQD45usPuruiRnDbQBr451Sj6eHt9nL8n87fl19jBPTJ4XMTELbky1qJXESkoGyihgQgEKky9EXWPDhSo5KF4CkzWysshyoSqGhWSSV_mU3Ix7e-8-txiiXrutH04KOhNcCZllqhhUxagy3oXgsdG9txvwe82ZPkSh13qMQh-i0GMUA3Y_Yji8YGfR62AsDh9WW48m6trZ_xf8ALzXl50</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhang, Tao</creator><creator>Cai, Jingyong</creator><creator>Wang, Liuya</creator><creator>Meng, Qingliang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9342-271X</orcidid></search><sort><creationdate>20220101</creationdate><title>Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe</title><author>Zhang, Tao ; Cai, Jingyong ; Wang, Liuya ; Meng, Qingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cb1cc8bd97e8770a9c9a069ae6c3b6ddef16951a915a07de054236980e4707183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Envelopes</topic><topic>Evaporation</topic><topic>Evaporators</topic><topic>Filling envelope</topic><topic>Flooding</topic><topic>Gravity</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Operating envelope</topic><topic>Sensitivity analysis</topic><topic>Solar collectors</topic><topic>Solar gravity heat pipe</topic><topic>Thermal energy</topic><topic>Thermal resistance</topic><topic>Wall temperature</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Cai, Jingyong</creatorcontrib><creatorcontrib>Wang, Liuya</creatorcontrib><creatorcontrib>Meng, Qingliang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tao</au><au>Cai, Jingyong</au><au>Wang, Liuya</au><au>Meng, Qingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe</atitle><jtitle>Energy (Oxford)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>238</volume><spage>121950</spage><pages>121950-</pages><artnum>121950</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>When integrating the gravity heat pipe with solar collector, the diameters of the evaporator and condenser are usually unequal, namely unequal diameter gravity heat pipe (UDGHP). Compared with the equal diameter gravity heat pipe (EDGHP), there are few studies focusing on operating pattern of the UDGHP. In this work, a numerical model for the UDGHP is firstly developed based on that of the EDGHP. Sensitivity analysis of the geometries of the evaporator and condenser, wall temperature, and working fluid on the filling and operating envelopes and the thermal resistance of the UDGHP is carried out under the criteria of local dryout and flooding limit. Particularly, comparisons between the UDGHP and EDGHP are simultaneously presented and discussed. The results reveal that the UDGHP has the expanded filling and operating envelopes and a smaller thermal resistance. Enlarging the inner diameter of the condenser, shortening the length of the evaporator, and raising the wall temperature can effectively improve the filling and operating envelopes and the heat transfer performance; lengthening the condenser improves the operating envelope and the heat transfer performance but shrinks the filling envelope. Variation patterns in the filling and operating envelopes and the thermal performance with different working fluids are disorders. •A numerical model constrained by two operating limits for the UDGHP is developed.•Effects of geometries on the filling and operating envelopes are sensitively analyzed.•Sensitivity analysis of geometries on the thermal resistance are explored and discussed.•Heat transfer patterns of the UDGHP and EDGHP are compared and discussed.•The appreciated condenser length and working fluids are suggested.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.121950</doi><orcidid>https://orcid.org/0000-0001-9342-271X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2022-01, Vol.238, p.121950, Article 121950
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2619672294
source ScienceDirect Freedom Collection
subjects Envelopes
Evaporation
Evaporators
Filling envelope
Flooding
Gravity
Heat
Heat pipes
Heat transfer
Mathematical models
Numerical models
Operating envelope
Sensitivity analysis
Solar collectors
Solar gravity heat pipe
Thermal energy
Thermal resistance
Wall temperature
Working fluids
title Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20and%20sensitive%20analysis%20on%20the%20filling,%20operating%20and%20performance%20patterns%20between%20the%20solar%20gravity%20heat%20pipe%20and%20the%20traditional%20gravity%20heat%20pipe&rft.jtitle=Energy%20(Oxford)&rft.au=Zhang,%20Tao&rft.date=2022-01-01&rft.volume=238&rft.spage=121950&rft.pages=121950-&rft.artnum=121950&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.121950&rft_dat=%3Cproquest_cross%3E2619672294%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-cb1cc8bd97e8770a9c9a069ae6c3b6ddef16951a915a07de054236980e4707183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619672294&rft_id=info:pmid/&rfr_iscdi=true