Loading…

One-Step Synthesis and Electrical Conductivity of CdSe-Based Nanocomposites

— We have developed novel hydrothermal (HT) and hydrothermal microwave (HTMW) processes for the synthesis of nanocrystalline cadmium selenide via reduction using glucose and sodium sulfite. The materials thus obtained have been characterized by X-ray diffraction, CHNS analysis, and electron microsco...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic materials 2021-12, Vol.57 (12), p.1221-1233
Main Authors: Kokorina, M. N., Koryttseva, A. K., Zaitseva, E. V., Budruev, A. V., Karzanov, V. V., Suleimanov, E. V., Baranchikov, A. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-85e7530801d26ca03b9508614c43d2d79f80e00da4c87cc8f11852b25b0ca8e13
container_end_page 1233
container_issue 12
container_start_page 1221
container_title Inorganic materials
container_volume 57
creator Kokorina, M. N.
Koryttseva, A. K.
Zaitseva, E. V.
Budruev, A. V.
Karzanov, V. V.
Suleimanov, E. V.
Baranchikov, A. E.
description — We have developed novel hydrothermal (HT) and hydrothermal microwave (HTMW) processes for the synthesis of nanocrystalline cadmium selenide via reduction using glucose and sodium sulfite. The materials thus obtained have been characterized by X-ray diffraction, CHNS analysis, and electron microscopy. The results demonstrate that they crystallize with a cubic and/or hexagonal symmetry and are nanocomposites containing 14 to 60 wt % organics. Varying synthesis conditions (temperature, composition of the starting mixture, and reaction time) allows one to obtain samples with sizes of coherent scattering regions from 6 to 80 nm. The use of the HTMW process reduces the synthesis time to 15 min in comparison with HT synthesis. The electrical resistance of nanocomposites, measured by the microwave loss method is 10 –4 to 10 –3 Ω cm, which is considerably lower than the resistivity of corresponding CdSe crystals. The data obtained in this work can be accounted for by the presence of carbon-containing components of the composite, which constitute a shell of particles. The increase in the cross-sectional area of “carbon channels” with decreasing nanoparticle size leads to an increase in the electrical conductivity of the material.
doi_str_mv 10.1134/S0020168521120086
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619746625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619746625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-85e7530801d26ca03b9508614c43d2d79f80e00da4c87cc8f11852b25b0ca8e13</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscTbsOrHjHCEqP6Kih8A5cm0HUrVxsF2kvj2pisQBcdrDfDO7O4RcIlwjZvlNDcABpRIckQMoeUQmKEGxDAt-TCZ7me31U3IW4woAcqHKCXle9I7VyQ203vXpw8UuUt1bOls7k0Jn9JpWvrdbk7qvLu2ob2lla8fudHSWvujeG78ZfOySi-fkpNXr6C5-5pS83c9eq0c2Xzw8VbdzZrhUiSnhCpGBArRcGg3ZshTjwZibPLPcFmWrwAFYnRtVGKNaxPGtJRdLMFo5zKbk6pA7BP-5dTE1K78N_biy4RLLIpeSi5HCA2WCjzG4thlCt9Fh1yA0-86aP52NHn7wxJHt3134Tf7f9A0PWGwZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619746625</pqid></control><display><type>article</type><title>One-Step Synthesis and Electrical Conductivity of CdSe-Based Nanocomposites</title><source>Springer Nature</source><creator>Kokorina, M. N. ; Koryttseva, A. K. ; Zaitseva, E. V. ; Budruev, A. V. ; Karzanov, V. V. ; Suleimanov, E. V. ; Baranchikov, A. E.</creator><creatorcontrib>Kokorina, M. N. ; Koryttseva, A. K. ; Zaitseva, E. V. ; Budruev, A. V. ; Karzanov, V. V. ; Suleimanov, E. V. ; Baranchikov, A. E.</creatorcontrib><description>— We have developed novel hydrothermal (HT) and hydrothermal microwave (HTMW) processes for the synthesis of nanocrystalline cadmium selenide via reduction using glucose and sodium sulfite. The materials thus obtained have been characterized by X-ray diffraction, CHNS analysis, and electron microscopy. The results demonstrate that they crystallize with a cubic and/or hexagonal symmetry and are nanocomposites containing 14 to 60 wt % organics. Varying synthesis conditions (temperature, composition of the starting mixture, and reaction time) allows one to obtain samples with sizes of coherent scattering regions from 6 to 80 nm. The use of the HTMW process reduces the synthesis time to 15 min in comparison with HT synthesis. The electrical resistance of nanocomposites, measured by the microwave loss method is 10 –4 to 10 –3 Ω cm, which is considerably lower than the resistivity of corresponding CdSe crystals. The data obtained in this work can be accounted for by the presence of carbon-containing components of the composite, which constitute a shell of particles. The increase in the cross-sectional area of “carbon channels” with decreasing nanoparticle size leads to an increase in the electrical conductivity of the material.</description><identifier>ISSN: 0020-1685</identifier><identifier>EISSN: 1608-3172</identifier><identifier>DOI: 10.1134/S0020168521120086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cadmium selenide ; Cadmium selenides ; Chemistry ; Chemistry and Materials Science ; Coherent scattering ; Electrical resistivity ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Materials Science ; Nanocomposites ; Nanoparticles ; Particulate composites ; Reaction time ; Sodium sulfite</subject><ispartof>Inorganic materials, 2021-12, Vol.57 (12), p.1221-1233</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0020-1685, Inorganic Materials, 2021, Vol. 57, No. 12, pp. 1221–1233. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Neorganicheskie Materialy, 2021, Vol. 57, No. 12, pp. 1292–1305.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-85e7530801d26ca03b9508614c43d2d79f80e00da4c87cc8f11852b25b0ca8e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kokorina, M. N.</creatorcontrib><creatorcontrib>Koryttseva, A. K.</creatorcontrib><creatorcontrib>Zaitseva, E. V.</creatorcontrib><creatorcontrib>Budruev, A. V.</creatorcontrib><creatorcontrib>Karzanov, V. V.</creatorcontrib><creatorcontrib>Suleimanov, E. V.</creatorcontrib><creatorcontrib>Baranchikov, A. E.</creatorcontrib><title>One-Step Synthesis and Electrical Conductivity of CdSe-Based Nanocomposites</title><title>Inorganic materials</title><addtitle>Inorg Mater</addtitle><description>— We have developed novel hydrothermal (HT) and hydrothermal microwave (HTMW) processes for the synthesis of nanocrystalline cadmium selenide via reduction using glucose and sodium sulfite. The materials thus obtained have been characterized by X-ray diffraction, CHNS analysis, and electron microscopy. The results demonstrate that they crystallize with a cubic and/or hexagonal symmetry and are nanocomposites containing 14 to 60 wt % organics. Varying synthesis conditions (temperature, composition of the starting mixture, and reaction time) allows one to obtain samples with sizes of coherent scattering regions from 6 to 80 nm. The use of the HTMW process reduces the synthesis time to 15 min in comparison with HT synthesis. The electrical resistance of nanocomposites, measured by the microwave loss method is 10 –4 to 10 –3 Ω cm, which is considerably lower than the resistivity of corresponding CdSe crystals. The data obtained in this work can be accounted for by the presence of carbon-containing components of the composite, which constitute a shell of particles. The increase in the cross-sectional area of “carbon channels” with decreasing nanoparticle size leads to an increase in the electrical conductivity of the material.</description><subject>Cadmium selenide</subject><subject>Cadmium selenides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coherent scattering</subject><subject>Electrical resistivity</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Particulate composites</subject><subject>Reaction time</subject><subject>Sodium sulfite</subject><issn>0020-1685</issn><issn>1608-3172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwscTbsOrHjHCEqP6Kih8A5cm0HUrVxsF2kvj2pisQBcdrDfDO7O4RcIlwjZvlNDcABpRIckQMoeUQmKEGxDAt-TCZ7me31U3IW4woAcqHKCXle9I7VyQ203vXpw8UuUt1bOls7k0Jn9JpWvrdbk7qvLu2ob2lla8fudHSWvujeG78ZfOySi-fkpNXr6C5-5pS83c9eq0c2Xzw8VbdzZrhUiSnhCpGBArRcGg3ZshTjwZibPLPcFmWrwAFYnRtVGKNaxPGtJRdLMFo5zKbk6pA7BP-5dTE1K78N_biy4RLLIpeSi5HCA2WCjzG4thlCt9Fh1yA0-86aP52NHn7wxJHt3134Tf7f9A0PWGwZ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kokorina, M. N.</creator><creator>Koryttseva, A. K.</creator><creator>Zaitseva, E. V.</creator><creator>Budruev, A. V.</creator><creator>Karzanov, V. V.</creator><creator>Suleimanov, E. V.</creator><creator>Baranchikov, A. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>One-Step Synthesis and Electrical Conductivity of CdSe-Based Nanocomposites</title><author>Kokorina, M. N. ; Koryttseva, A. K. ; Zaitseva, E. V. ; Budruev, A. V. ; Karzanov, V. V. ; Suleimanov, E. V. ; Baranchikov, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-85e7530801d26ca03b9508614c43d2d79f80e00da4c87cc8f11852b25b0ca8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cadmium selenide</topic><topic>Cadmium selenides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coherent scattering</topic><topic>Electrical resistivity</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Particulate composites</topic><topic>Reaction time</topic><topic>Sodium sulfite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokorina, M. N.</creatorcontrib><creatorcontrib>Koryttseva, A. K.</creatorcontrib><creatorcontrib>Zaitseva, E. V.</creatorcontrib><creatorcontrib>Budruev, A. V.</creatorcontrib><creatorcontrib>Karzanov, V. V.</creatorcontrib><creatorcontrib>Suleimanov, E. V.</creatorcontrib><creatorcontrib>Baranchikov, A. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokorina, M. N.</au><au>Koryttseva, A. K.</au><au>Zaitseva, E. V.</au><au>Budruev, A. V.</au><au>Karzanov, V. V.</au><au>Suleimanov, E. V.</au><au>Baranchikov, A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Step Synthesis and Electrical Conductivity of CdSe-Based Nanocomposites</atitle><jtitle>Inorganic materials</jtitle><stitle>Inorg Mater</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>57</volume><issue>12</issue><spage>1221</spage><epage>1233</epage><pages>1221-1233</pages><issn>0020-1685</issn><eissn>1608-3172</eissn><abstract>— We have developed novel hydrothermal (HT) and hydrothermal microwave (HTMW) processes for the synthesis of nanocrystalline cadmium selenide via reduction using glucose and sodium sulfite. The materials thus obtained have been characterized by X-ray diffraction, CHNS analysis, and electron microscopy. The results demonstrate that they crystallize with a cubic and/or hexagonal symmetry and are nanocomposites containing 14 to 60 wt % organics. Varying synthesis conditions (temperature, composition of the starting mixture, and reaction time) allows one to obtain samples with sizes of coherent scattering regions from 6 to 80 nm. The use of the HTMW process reduces the synthesis time to 15 min in comparison with HT synthesis. The electrical resistance of nanocomposites, measured by the microwave loss method is 10 –4 to 10 –3 Ω cm, which is considerably lower than the resistivity of corresponding CdSe crystals. The data obtained in this work can be accounted for by the presence of carbon-containing components of the composite, which constitute a shell of particles. The increase in the cross-sectional area of “carbon channels” with decreasing nanoparticle size leads to an increase in the electrical conductivity of the material.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0020168521120086</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1685
ispartof Inorganic materials, 2021-12, Vol.57 (12), p.1221-1233
issn 0020-1685
1608-3172
language eng
recordid cdi_proquest_journals_2619746625
source Springer Nature
subjects Cadmium selenide
Cadmium selenides
Chemistry
Chemistry and Materials Science
Coherent scattering
Electrical resistivity
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Materials Science
Nanocomposites
Nanoparticles
Particulate composites
Reaction time
Sodium sulfite
title One-Step Synthesis and Electrical Conductivity of CdSe-Based Nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Step%20Synthesis%20and%20Electrical%20Conductivity%20of%20CdSe-Based%20Nanocomposites&rft.jtitle=Inorganic%20materials&rft.au=Kokorina,%20M.%20N.&rft.date=2021-12-01&rft.volume=57&rft.issue=12&rft.spage=1221&rft.epage=1233&rft.pages=1221-1233&rft.issn=0020-1685&rft.eissn=1608-3172&rft_id=info:doi/10.1134/S0020168521120086&rft_dat=%3Cproquest_cross%3E2619746625%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-85e7530801d26ca03b9508614c43d2d79f80e00da4c87cc8f11852b25b0ca8e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619746625&rft_id=info:pmid/&rfr_iscdi=true