Loading…
Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings
A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overal...
Saved in:
Published in: | Journal of thermal science 2022, Vol.31 (1), p.224-238 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633 |
container_end_page | 238 |
container_issue | 1 |
container_start_page | 224 |
container_title | Journal of thermal science |
container_volume | 31 |
creator | Pu, Jian Zhang, Tiao Huang, Xin Wang, Jianhua Wu, Weilong |
description | A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement. |
doi_str_mv | 10.1007/s11630-022-1561-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619853099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619853099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskmbo9ZPKFSworeQbJO6Zbupya7Qf29KFU-eZgae9x14CDlHuESA0VVClBwoMEZRSKTigAxQKU6B8_fDvANwylCqY3KS0gpAjiQvB2Q1-3LRNE0x_3BxbZri2UUf8tZWLhXBF7eht42jbzvmzvs-1aEtJiE0dbvMM6fdorDb4qVe943p8vHbdGNirF3MkOkynE7JkTdNcmc_c0he7-_mk0c6nT08Ta6ntGKl7GglbAncLQSwUnkOVekRGSoEMTaclWgZ90K5hS2Zray1QlgGio-Z8Ggl50Nyse_dxPDZu9TpVehjm19qJlGNBYcsZkhwT1UxpBSd15tYr03cagS9U6r3SnVWqndKtcgZts-kzLZLF_-a_w99AxR2eNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619853099</pqid></control><display><type>article</type><title>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</title><source>Springer Link</source><creator>Pu, Jian ; Zhang, Tiao ; Huang, Xin ; Wang, Jianhua ; Wu, Weilong</creator><creatorcontrib>Pu, Jian ; Zhang, Tiao ; Huang, Xin ; Wang, Jianhua ; Wu, Weilong</creatorcontrib><description>A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement.</description><identifier>ISSN: 1003-2169</identifier><identifier>EISSN: 1993-033X</identifier><identifier>DOI: 10.1007/s11630-022-1561-5</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Classical and Continuum Physics ; Configuration management ; Coolants ; Cooling ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Gas turbines ; Heat and Mass Transfer ; Impingement ; Physics ; Physics and Astronomy ; Temperature ratio ; Thermal barrier coatings ; Thermal protection ; Thermal simulation ; Thickness</subject><ispartof>Journal of thermal science, 2022, Vol.31 (1), p.224-238</ispartof><rights>Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</citedby><cites>FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Zhang, Tiao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Wu, Weilong</creatorcontrib><title>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</title><title>Journal of thermal science</title><addtitle>J. Therm. Sci</addtitle><description>A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement.</description><subject>Classical and Continuum Physics</subject><subject>Configuration management</subject><subject>Coolants</subject><subject>Cooling</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Gas turbines</subject><subject>Heat and Mass Transfer</subject><subject>Impingement</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature ratio</subject><subject>Thermal barrier coatings</subject><subject>Thermal protection</subject><subject>Thermal simulation</subject><subject>Thickness</subject><issn>1003-2169</issn><issn>1993-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskmbo9ZPKFSworeQbJO6Zbupya7Qf29KFU-eZgae9x14CDlHuESA0VVClBwoMEZRSKTigAxQKU6B8_fDvANwylCqY3KS0gpAjiQvB2Q1-3LRNE0x_3BxbZri2UUf8tZWLhXBF7eht42jbzvmzvs-1aEtJiE0dbvMM6fdorDb4qVe943p8vHbdGNirF3MkOkynE7JkTdNcmc_c0he7-_mk0c6nT08Ta6ntGKl7GglbAncLQSwUnkOVekRGSoEMTaclWgZ90K5hS2Zray1QlgGio-Z8Ggl50Nyse_dxPDZu9TpVehjm19qJlGNBYcsZkhwT1UxpBSd15tYr03cagS9U6r3SnVWqndKtcgZts-kzLZLF_-a_w99AxR2eNo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pu, Jian</creator><creator>Zhang, Tiao</creator><creator>Huang, Xin</creator><creator>Wang, Jianhua</creator><creator>Wu, Weilong</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</title><author>Pu, Jian ; Zhang, Tiao ; Huang, Xin ; Wang, Jianhua ; Wu, Weilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Continuum Physics</topic><topic>Configuration management</topic><topic>Coolants</topic><topic>Cooling</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Gas turbines</topic><topic>Heat and Mass Transfer</topic><topic>Impingement</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature ratio</topic><topic>Thermal barrier coatings</topic><topic>Thermal protection</topic><topic>Thermal simulation</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Zhang, Tiao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Wu, Weilong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Jian</au><au>Zhang, Tiao</au><au>Huang, Xin</au><au>Wang, Jianhua</au><au>Wu, Weilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</atitle><jtitle>Journal of thermal science</jtitle><stitle>J. Therm. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>31</volume><issue>1</issue><spage>224</spage><epage>238</epage><pages>224-238</pages><issn>1003-2169</issn><eissn>1993-033X</eissn><abstract>A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11630-022-1561-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1003-2169 |
ispartof | Journal of thermal science, 2022, Vol.31 (1), p.224-238 |
issn | 1003-2169 1993-033X |
language | eng |
recordid | cdi_proquest_journals_2619853099 |
source | Springer Link |
subjects | Classical and Continuum Physics Configuration management Coolants Cooling Engineering Fluid Dynamics Engineering Thermodynamics Gas turbines Heat and Mass Transfer Impingement Physics Physics and Astronomy Temperature ratio Thermal barrier coatings Thermal protection Thermal simulation Thickness |
title | Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overall%20Thermal%20Performances%20of%20Double-Wall%20Effusion%20Cooling%20Covered%20by%20Simulated%20Thermal%20Barrier%20Coatings&rft.jtitle=Journal%20of%20thermal%20science&rft.au=Pu,%20Jian&rft.date=2022&rft.volume=31&rft.issue=1&rft.spage=224&rft.epage=238&rft.pages=224-238&rft.issn=1003-2169&rft.eissn=1993-033X&rft_id=info:doi/10.1007/s11630-022-1561-5&rft_dat=%3Cproquest_cross%3E2619853099%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619853099&rft_id=info:pmid/&rfr_iscdi=true |