Loading…

Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings

A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal science 2022, Vol.31 (1), p.224-238
Main Authors: Pu, Jian, Zhang, Tiao, Huang, Xin, Wang, Jianhua, Wu, Weilong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633
cites cdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633
container_end_page 238
container_issue 1
container_start_page 224
container_title Journal of thermal science
container_volume 31
creator Pu, Jian
Zhang, Tiao
Huang, Xin
Wang, Jianhua
Wu, Weilong
description A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement.
doi_str_mv 10.1007/s11630-022-1561-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619853099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619853099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskmbo9ZPKFSworeQbJO6Zbupya7Qf29KFU-eZgae9x14CDlHuESA0VVClBwoMEZRSKTigAxQKU6B8_fDvANwylCqY3KS0gpAjiQvB2Q1-3LRNE0x_3BxbZri2UUf8tZWLhXBF7eht42jbzvmzvs-1aEtJiE0dbvMM6fdorDb4qVe943p8vHbdGNirF3MkOkynE7JkTdNcmc_c0he7-_mk0c6nT08Ta6ntGKl7GglbAncLQSwUnkOVekRGSoEMTaclWgZ90K5hS2Zray1QlgGio-Z8Ggl50Nyse_dxPDZu9TpVehjm19qJlGNBYcsZkhwT1UxpBSd15tYr03cagS9U6r3SnVWqndKtcgZts-kzLZLF_-a_w99AxR2eNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619853099</pqid></control><display><type>article</type><title>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</title><source>Springer Link</source><creator>Pu, Jian ; Zhang, Tiao ; Huang, Xin ; Wang, Jianhua ; Wu, Weilong</creator><creatorcontrib>Pu, Jian ; Zhang, Tiao ; Huang, Xin ; Wang, Jianhua ; Wu, Weilong</creatorcontrib><description>A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement.</description><identifier>ISSN: 1003-2169</identifier><identifier>EISSN: 1993-033X</identifier><identifier>DOI: 10.1007/s11630-022-1561-5</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Classical and Continuum Physics ; Configuration management ; Coolants ; Cooling ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Gas turbines ; Heat and Mass Transfer ; Impingement ; Physics ; Physics and Astronomy ; Temperature ratio ; Thermal barrier coatings ; Thermal protection ; Thermal simulation ; Thickness</subject><ispartof>Journal of thermal science, 2022, Vol.31 (1), p.224-238</ispartof><rights>Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</citedby><cites>FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Zhang, Tiao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Wu, Weilong</creatorcontrib><title>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</title><title>Journal of thermal science</title><addtitle>J. Therm. Sci</addtitle><description>A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement.</description><subject>Classical and Continuum Physics</subject><subject>Configuration management</subject><subject>Coolants</subject><subject>Cooling</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Gas turbines</subject><subject>Heat and Mass Transfer</subject><subject>Impingement</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature ratio</subject><subject>Thermal barrier coatings</subject><subject>Thermal protection</subject><subject>Thermal simulation</subject><subject>Thickness</subject><issn>1003-2169</issn><issn>1993-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskmbo9ZPKFSworeQbJO6Zbupya7Qf29KFU-eZgae9x14CDlHuESA0VVClBwoMEZRSKTigAxQKU6B8_fDvANwylCqY3KS0gpAjiQvB2Q1-3LRNE0x_3BxbZri2UUf8tZWLhXBF7eht42jbzvmzvs-1aEtJiE0dbvMM6fdorDb4qVe943p8vHbdGNirF3MkOkynE7JkTdNcmc_c0he7-_mk0c6nT08Ta6ntGKl7GglbAncLQSwUnkOVekRGSoEMTaclWgZ90K5hS2Zray1QlgGio-Z8Ggl50Nyse_dxPDZu9TpVehjm19qJlGNBYcsZkhwT1UxpBSd15tYr03cagS9U6r3SnVWqndKtcgZts-kzLZLF_-a_w99AxR2eNo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pu, Jian</creator><creator>Zhang, Tiao</creator><creator>Huang, Xin</creator><creator>Wang, Jianhua</creator><creator>Wu, Weilong</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</title><author>Pu, Jian ; Zhang, Tiao ; Huang, Xin ; Wang, Jianhua ; Wu, Weilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Continuum Physics</topic><topic>Configuration management</topic><topic>Coolants</topic><topic>Cooling</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Gas turbines</topic><topic>Heat and Mass Transfer</topic><topic>Impingement</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature ratio</topic><topic>Thermal barrier coatings</topic><topic>Thermal protection</topic><topic>Thermal simulation</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Zhang, Tiao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Wu, Weilong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Jian</au><au>Zhang, Tiao</au><au>Huang, Xin</au><au>Wang, Jianhua</au><au>Wu, Weilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings</atitle><jtitle>Journal of thermal science</jtitle><stitle>J. Therm. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>31</volume><issue>1</issue><spage>224</spage><epage>238</epage><pages>224-238</pages><issn>1003-2169</issn><eissn>1993-033X</eissn><abstract>A coupling configuration of double-wall cooling and exterior surface thermal barrier coating (TBC) is one of the most promising thermal protection methods of hot components of modern gas turbine. The combined influences of coating thickness, impingement layout, and cooling air flowrate on the overall thermal performances of such configuration were discussed deeply, to provide the valuable guidance of design. Overall effectiveness measurements were implemented under engine-matched Biot numbers and mainstream-to-coolant temperature ratio. Conjugate heat transfer simulations provided the additional information difficult to be acquired by the measurements. The results indicated that the contribution of TBC is much larger than that of increasing the cooling air amount. The thicker TBC can produce the stronger insulation, while the higher risk of thermal damage of itself. The larger coolant flowrate enlarges the benefit of TBC, while the trend is suppressed by the thick TBC. The constant coating thickness cannot bring to the uniform metal temperature, which can be solved through properly adjusting the backside impingement. The trends in overall effectiveness with TBC’s thickness are independent on the change of internal impingement.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11630-022-1561-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1003-2169
ispartof Journal of thermal science, 2022, Vol.31 (1), p.224-238
issn 1003-2169
1993-033X
language eng
recordid cdi_proquest_journals_2619853099
source Springer Link
subjects Classical and Continuum Physics
Configuration management
Coolants
Cooling
Engineering Fluid Dynamics
Engineering Thermodynamics
Gas turbines
Heat and Mass Transfer
Impingement
Physics
Physics and Astronomy
Temperature ratio
Thermal barrier coatings
Thermal protection
Thermal simulation
Thickness
title Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overall%20Thermal%20Performances%20of%20Double-Wall%20Effusion%20Cooling%20Covered%20by%20Simulated%20Thermal%20Barrier%20Coatings&rft.jtitle=Journal%20of%20thermal%20science&rft.au=Pu,%20Jian&rft.date=2022&rft.volume=31&rft.issue=1&rft.spage=224&rft.epage=238&rft.pages=224-238&rft.issn=1003-2169&rft.eissn=1993-033X&rft_id=info:doi/10.1007/s11630-022-1561-5&rft_dat=%3Cproquest_cross%3E2619853099%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-c5b403ed50249f30c4f112191058a3241b23f59edb42bcbbb55b2093825f1b633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619853099&rft_id=info:pmid/&rfr_iscdi=true