Loading…

Energy markets – Who are the influencers?

The energy markets have recently undergone important transformations (e.g. deregulation, technological progress, renewable energy deployment and changing energy consumer behaviour) and witnessed a variety of crisis periods, affecting the relationships among energy commodities and their interactions...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2022-01, Vol.239, p.121962, Article 121962
Main Authors: Ferreira, Paulo, Almeida, Dora, Dionísio, Andreia, Bouri, Elie, Quintino, Derick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-f7a7840d55a0b84936ec157f02b627dfa037014c88a9e2cdbf0e1239f2da3f273
cites cdi_FETCH-LOGICAL-c409t-f7a7840d55a0b84936ec157f02b627dfa037014c88a9e2cdbf0e1239f2da3f273
container_end_page
container_issue
container_start_page 121962
container_title Energy (Oxford)
container_volume 239
creator Ferreira, Paulo
Almeida, Dora
Dionísio, Andreia
Bouri, Elie
Quintino, Derick
description The energy markets have recently undergone important transformations (e.g. deregulation, technological progress, renewable energy deployment and changing energy consumer behaviour) and witnessed a variety of crisis periods, affecting the relationships among energy commodities and their interactions with clean energy indices. This has implications for price discovery, asset allocation and risk management, which requires in-depth analysis to uncover and identify which energy indices (or forms of energy) lead others or are the most influential, while accounting for asymmetry and non-linearity characteristics. To uncover the complex structure of the relationship across the returns of seven different energy commodities and two clean energy stock indices, we apply Granger causality and transfer entropy in both static and dynamic approaches. The results from the Granger causality analysis identify the influence of the other energy products on natural gas, whereas the transfer entropy analysis reveals the importance of WTI oil and the influence of clean energy indices. Diesel is the most influenced energy commodity. A rolling windows analysis confirms those findings and shows evidence of a time-variation that reflects the impacts of crisis periods, especially the pandemic, on the dynamics of relationships. •Seven energy commodities prices and two clean energy stock indices are analysed.•Both Granger causality and transfer entropy are employed.•Results show evidence of a time-variation that reflects the impacts of crises periods.
doi_str_mv 10.1016/j.energy.2021.121962
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620025471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221022106</els_id><sourcerecordid>2620025471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f7a7840d55a0b84936ec157f02b627dfa037014c88a9e2cdbf0e1239f2da3f273</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBgyRGFHC9U_seAGhqvxIlVhAjJbjXNOEkhQ7RerGO_CGPAkpYWa6yznn6vsIOaWQUaDyosmwxfCyzRgwmlFGtWR7ZEILxVOpinyfTIBLSHMh2CE5irEBgLzQekLO57_N5M2GV-xj8v35lTwvu8QGTPolJnXrVxtsHYZ4dUwOvF1FPPm7U_J0M3-c3aWLh9v72fUidQJ0n3plVSGgynMLZSE0l-horjywUjJVeQtcARWuKKxG5qrSA1LGtWeV5Z4pPiVn4-46dO8bjL1puk1oh5eGSQbAcqHokBJjyoUuxoDerEM9YGwNBbPTYhozajE7LWbUMtQuxxoOBB81BhNdvQOs6oCuN1VX_z_wA_7da_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620025471</pqid></control><display><type>article</type><title>Energy markets – Who are the influencers?</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ferreira, Paulo ; Almeida, Dora ; Dionísio, Andreia ; Bouri, Elie ; Quintino, Derick</creator><creatorcontrib>Ferreira, Paulo ; Almeida, Dora ; Dionísio, Andreia ; Bouri, Elie ; Quintino, Derick</creatorcontrib><description>The energy markets have recently undergone important transformations (e.g. deregulation, technological progress, renewable energy deployment and changing energy consumer behaviour) and witnessed a variety of crisis periods, affecting the relationships among energy commodities and their interactions with clean energy indices. This has implications for price discovery, asset allocation and risk management, which requires in-depth analysis to uncover and identify which energy indices (or forms of energy) lead others or are the most influential, while accounting for asymmetry and non-linearity characteristics. To uncover the complex structure of the relationship across the returns of seven different energy commodities and two clean energy stock indices, we apply Granger causality and transfer entropy in both static and dynamic approaches. The results from the Granger causality analysis identify the influence of the other energy products on natural gas, whereas the transfer entropy analysis reveals the importance of WTI oil and the influence of clean energy indices. Diesel is the most influenced energy commodity. A rolling windows analysis confirms those findings and shows evidence of a time-variation that reflects the impacts of crisis periods, especially the pandemic, on the dynamics of relationships. •Seven energy commodities prices and two clean energy stock indices are analysed.•Both Granger causality and transfer entropy are employed.•Results show evidence of a time-variation that reflects the impacts of crises periods.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.121962</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Clean and dirty energy assets ; Clean energy ; Clean technology ; Commodities ; Deregulation ; Energy ; Energy industry ; Energy markets ; Entropy ; Granger causality ; Influencer ; Natural gas ; Pandemics ; Renewable energy ; Risk allocation ; Risk management ; Transfer entropy</subject><ispartof>Energy (Oxford), 2022-01, Vol.239, p.121962, Article 121962</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f7a7840d55a0b84936ec157f02b627dfa037014c88a9e2cdbf0e1239f2da3f273</citedby><cites>FETCH-LOGICAL-c409t-f7a7840d55a0b84936ec157f02b627dfa037014c88a9e2cdbf0e1239f2da3f273</cites><orcidid>0000-0003-0224-8635 ; 0000-0003-1951-889X ; 0000-0002-9382-8442 ; 0000-0002-4289-9312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ferreira, Paulo</creatorcontrib><creatorcontrib>Almeida, Dora</creatorcontrib><creatorcontrib>Dionísio, Andreia</creatorcontrib><creatorcontrib>Bouri, Elie</creatorcontrib><creatorcontrib>Quintino, Derick</creatorcontrib><title>Energy markets – Who are the influencers?</title><title>Energy (Oxford)</title><description>The energy markets have recently undergone important transformations (e.g. deregulation, technological progress, renewable energy deployment and changing energy consumer behaviour) and witnessed a variety of crisis periods, affecting the relationships among energy commodities and their interactions with clean energy indices. This has implications for price discovery, asset allocation and risk management, which requires in-depth analysis to uncover and identify which energy indices (or forms of energy) lead others or are the most influential, while accounting for asymmetry and non-linearity characteristics. To uncover the complex structure of the relationship across the returns of seven different energy commodities and two clean energy stock indices, we apply Granger causality and transfer entropy in both static and dynamic approaches. The results from the Granger causality analysis identify the influence of the other energy products on natural gas, whereas the transfer entropy analysis reveals the importance of WTI oil and the influence of clean energy indices. Diesel is the most influenced energy commodity. A rolling windows analysis confirms those findings and shows evidence of a time-variation that reflects the impacts of crisis periods, especially the pandemic, on the dynamics of relationships. •Seven energy commodities prices and two clean energy stock indices are analysed.•Both Granger causality and transfer entropy are employed.•Results show evidence of a time-variation that reflects the impacts of crises periods.</description><subject>Clean and dirty energy assets</subject><subject>Clean energy</subject><subject>Clean technology</subject><subject>Commodities</subject><subject>Deregulation</subject><subject>Energy</subject><subject>Energy industry</subject><subject>Energy markets</subject><subject>Entropy</subject><subject>Granger causality</subject><subject>Influencer</subject><subject>Natural gas</subject><subject>Pandemics</subject><subject>Renewable energy</subject><subject>Risk allocation</subject><subject>Risk management</subject><subject>Transfer entropy</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBgyRGFHC9U_seAGhqvxIlVhAjJbjXNOEkhQ7RerGO_CGPAkpYWa6yznn6vsIOaWQUaDyosmwxfCyzRgwmlFGtWR7ZEILxVOpinyfTIBLSHMh2CE5irEBgLzQekLO57_N5M2GV-xj8v35lTwvu8QGTPolJnXrVxtsHYZ4dUwOvF1FPPm7U_J0M3-c3aWLh9v72fUidQJ0n3plVSGgynMLZSE0l-horjywUjJVeQtcARWuKKxG5qrSA1LGtWeV5Z4pPiVn4-46dO8bjL1puk1oh5eGSQbAcqHokBJjyoUuxoDerEM9YGwNBbPTYhozajE7LWbUMtQuxxoOBB81BhNdvQOs6oCuN1VX_z_wA_7da_U</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Ferreira, Paulo</creator><creator>Almeida, Dora</creator><creator>Dionísio, Andreia</creator><creator>Bouri, Elie</creator><creator>Quintino, Derick</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0224-8635</orcidid><orcidid>https://orcid.org/0000-0003-1951-889X</orcidid><orcidid>https://orcid.org/0000-0002-9382-8442</orcidid><orcidid>https://orcid.org/0000-0002-4289-9312</orcidid></search><sort><creationdate>20220115</creationdate><title>Energy markets – Who are the influencers?</title><author>Ferreira, Paulo ; Almeida, Dora ; Dionísio, Andreia ; Bouri, Elie ; Quintino, Derick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f7a7840d55a0b84936ec157f02b627dfa037014c88a9e2cdbf0e1239f2da3f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clean and dirty energy assets</topic><topic>Clean energy</topic><topic>Clean technology</topic><topic>Commodities</topic><topic>Deregulation</topic><topic>Energy</topic><topic>Energy industry</topic><topic>Energy markets</topic><topic>Entropy</topic><topic>Granger causality</topic><topic>Influencer</topic><topic>Natural gas</topic><topic>Pandemics</topic><topic>Renewable energy</topic><topic>Risk allocation</topic><topic>Risk management</topic><topic>Transfer entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Paulo</creatorcontrib><creatorcontrib>Almeida, Dora</creatorcontrib><creatorcontrib>Dionísio, Andreia</creatorcontrib><creatorcontrib>Bouri, Elie</creatorcontrib><creatorcontrib>Quintino, Derick</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Paulo</au><au>Almeida, Dora</au><au>Dionísio, Andreia</au><au>Bouri, Elie</au><au>Quintino, Derick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy markets – Who are the influencers?</atitle><jtitle>Energy (Oxford)</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>239</volume><spage>121962</spage><pages>121962-</pages><artnum>121962</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The energy markets have recently undergone important transformations (e.g. deregulation, technological progress, renewable energy deployment and changing energy consumer behaviour) and witnessed a variety of crisis periods, affecting the relationships among energy commodities and their interactions with clean energy indices. This has implications for price discovery, asset allocation and risk management, which requires in-depth analysis to uncover and identify which energy indices (or forms of energy) lead others or are the most influential, while accounting for asymmetry and non-linearity characteristics. To uncover the complex structure of the relationship across the returns of seven different energy commodities and two clean energy stock indices, we apply Granger causality and transfer entropy in both static and dynamic approaches. The results from the Granger causality analysis identify the influence of the other energy products on natural gas, whereas the transfer entropy analysis reveals the importance of WTI oil and the influence of clean energy indices. Diesel is the most influenced energy commodity. A rolling windows analysis confirms those findings and shows evidence of a time-variation that reflects the impacts of crisis periods, especially the pandemic, on the dynamics of relationships. •Seven energy commodities prices and two clean energy stock indices are analysed.•Both Granger causality and transfer entropy are employed.•Results show evidence of a time-variation that reflects the impacts of crises periods.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.121962</doi><orcidid>https://orcid.org/0000-0003-0224-8635</orcidid><orcidid>https://orcid.org/0000-0003-1951-889X</orcidid><orcidid>https://orcid.org/0000-0002-9382-8442</orcidid><orcidid>https://orcid.org/0000-0002-4289-9312</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2022-01, Vol.239, p.121962, Article 121962
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2620025471
source ScienceDirect Freedom Collection 2022-2024
subjects Clean and dirty energy assets
Clean energy
Clean technology
Commodities
Deregulation
Energy
Energy industry
Energy markets
Entropy
Granger causality
Influencer
Natural gas
Pandemics
Renewable energy
Risk allocation
Risk management
Transfer entropy
title Energy markets – Who are the influencers?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20markets%20%E2%80%93%20Who%20are%20the%20influencers?&rft.jtitle=Energy%20(Oxford)&rft.au=Ferreira,%20Paulo&rft.date=2022-01-15&rft.volume=239&rft.spage=121962&rft.pages=121962-&rft.artnum=121962&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.121962&rft_dat=%3Cproquest_cross%3E2620025471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-f7a7840d55a0b84936ec157f02b627dfa037014c88a9e2cdbf0e1239f2da3f273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620025471&rft_id=info:pmid/&rfr_iscdi=true