Loading…

A function based adaptive EWMA mean monitoring control chart

Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average...

Full description

Saved in:
Bibliographic Details
Published in:Quality and reliability engineering international 2022-02, Vol.38 (1), p.248-263
Main Authors: Noor‐ul‐Amin, Muhammad, Arshad, Asma, Hanif, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3
cites cdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3
container_end_page 263
container_issue 1
container_start_page 248
container_title Quality and reliability engineering international
container_volume 38
creator Noor‐ul‐Amin, Muhammad
Arshad, Asma
Hanif, Muhammad
description Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept.
doi_str_mv 10.1002/qre.2974
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620099723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620099723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5mcmk4CbUloVKqIoLkMmk6tT2qRNpkrf3tS6dXU3H-dwD0KXlIwoIexmE92Iqbo8QgNKlCqo4PIYDUhdykISWp-is5QWhGSs5ADdjjFsve274HFjkmuxac26774cnr4_jvHKGY9XwXd9iJ3_wDb4PoYltp8m9ufoBMwyuYu_O0Rvs-nr5L6YP909TMbzwjLFy8JVzFSi4VRBUzMOVlWKADAAAaqWnLeCgTEWhGhYK5VwslSigtJVjkFt-BBdHXLXMWy2LvV6EbbR50rNBMuPqByb1fVB2RhSig70OnYrE3eaEr3fRudt9H6bTIsD_e6Wbvev088v01__A-raZFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620099723</pqid></control><display><type>article</type><title>A function based adaptive EWMA mean monitoring control chart</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Noor‐ul‐Amin, Muhammad ; Arshad, Asma ; Hanif, Muhammad</creator><creatorcontrib>Noor‐ul‐Amin, Muhammad ; Arshad, Asma ; Hanif, Muhammad</creatorcontrib><description>Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2974</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; adaptive EWMA ; average run length ; Continuity (mathematics) ; control chart ; Control charts ; EWMA ; Mean ; Monitoring ; Process controls ; Statistical analysis ; Statistical process control</subject><ispartof>Quality and reliability engineering international, 2022-02, Vol.38 (1), p.248-263</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</citedby><cites>FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</cites><orcidid>0000-0003-2882-221X ; 0000-0002-2344-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Noor‐ul‐Amin, Muhammad</creatorcontrib><creatorcontrib>Arshad, Asma</creatorcontrib><creatorcontrib>Hanif, Muhammad</creatorcontrib><title>A function based adaptive EWMA mean monitoring control chart</title><title>Quality and reliability engineering international</title><description>Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept.</description><subject>Adaptive control</subject><subject>adaptive EWMA</subject><subject>average run length</subject><subject>Continuity (mathematics)</subject><subject>control chart</subject><subject>Control charts</subject><subject>EWMA</subject><subject>Mean</subject><subject>Monitoring</subject><subject>Process controls</subject><subject>Statistical analysis</subject><subject>Statistical process control</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5mcmk4CbUloVKqIoLkMmk6tT2qRNpkrf3tS6dXU3H-dwD0KXlIwoIexmE92Iqbo8QgNKlCqo4PIYDUhdykISWp-is5QWhGSs5ADdjjFsve274HFjkmuxac26774cnr4_jvHKGY9XwXd9iJ3_wDb4PoYltp8m9ufoBMwyuYu_O0Rvs-nr5L6YP909TMbzwjLFy8JVzFSi4VRBUzMOVlWKADAAAaqWnLeCgTEWhGhYK5VwslSigtJVjkFt-BBdHXLXMWy2LvV6EbbR50rNBMuPqByb1fVB2RhSig70OnYrE3eaEr3fRudt9H6bTIsD_e6Wbvev088v01__A-raZFk</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Noor‐ul‐Amin, Muhammad</creator><creator>Arshad, Asma</creator><creator>Hanif, Muhammad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-2882-221X</orcidid><orcidid>https://orcid.org/0000-0002-2344-1920</orcidid></search><sort><creationdate>202202</creationdate><title>A function based adaptive EWMA mean monitoring control chart</title><author>Noor‐ul‐Amin, Muhammad ; Arshad, Asma ; Hanif, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>adaptive EWMA</topic><topic>average run length</topic><topic>Continuity (mathematics)</topic><topic>control chart</topic><topic>Control charts</topic><topic>EWMA</topic><topic>Mean</topic><topic>Monitoring</topic><topic>Process controls</topic><topic>Statistical analysis</topic><topic>Statistical process control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noor‐ul‐Amin, Muhammad</creatorcontrib><creatorcontrib>Arshad, Asma</creatorcontrib><creatorcontrib>Hanif, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noor‐ul‐Amin, Muhammad</au><au>Arshad, Asma</au><au>Hanif, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A function based adaptive EWMA mean monitoring control chart</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2022-02</date><risdate>2022</risdate><volume>38</volume><issue>1</issue><spage>248</spage><epage>263</epage><pages>248-263</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2974</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2882-221X</orcidid><orcidid>https://orcid.org/0000-0002-2344-1920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2022-02, Vol.38 (1), p.248-263
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2620099723
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Adaptive control
adaptive EWMA
average run length
Continuity (mathematics)
control chart
Control charts
EWMA
Mean
Monitoring
Process controls
Statistical analysis
Statistical process control
title A function based adaptive EWMA mean monitoring control chart
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20function%20based%20adaptive%20EWMA%20mean%20monitoring%20control%20chart&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Noor%E2%80%90ul%E2%80%90Amin,%20Muhammad&rft.date=2022-02&rft.volume=38&rft.issue=1&rft.spage=248&rft.epage=263&rft.pages=248-263&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2974&rft_dat=%3Cproquest_cross%3E2620099723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620099723&rft_id=info:pmid/&rfr_iscdi=true