Loading…
A function based adaptive EWMA mean monitoring control chart
Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average...
Saved in:
Published in: | Quality and reliability engineering international 2022-02, Vol.38 (1), p.248-263 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3 |
container_end_page | 263 |
container_issue | 1 |
container_start_page | 248 |
container_title | Quality and reliability engineering international |
container_volume | 38 |
creator | Noor‐ul‐Amin, Muhammad Arshad, Asma Hanif, Muhammad |
description | Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept. |
doi_str_mv | 10.1002/qre.2974 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620099723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620099723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5mcmk4CbUloVKqIoLkMmk6tT2qRNpkrf3tS6dXU3H-dwD0KXlIwoIexmE92Iqbo8QgNKlCqo4PIYDUhdykISWp-is5QWhGSs5ADdjjFsve274HFjkmuxac26774cnr4_jvHKGY9XwXd9iJ3_wDb4PoYltp8m9ufoBMwyuYu_O0Rvs-nr5L6YP909TMbzwjLFy8JVzFSi4VRBUzMOVlWKADAAAaqWnLeCgTEWhGhYK5VwslSigtJVjkFt-BBdHXLXMWy2LvV6EbbR50rNBMuPqByb1fVB2RhSig70OnYrE3eaEr3fRudt9H6bTIsD_e6Wbvev088v01__A-raZFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620099723</pqid></control><display><type>article</type><title>A function based adaptive EWMA mean monitoring control chart</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Noor‐ul‐Amin, Muhammad ; Arshad, Asma ; Hanif, Muhammad</creator><creatorcontrib>Noor‐ul‐Amin, Muhammad ; Arshad, Asma ; Hanif, Muhammad</creatorcontrib><description>Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2974</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; adaptive EWMA ; average run length ; Continuity (mathematics) ; control chart ; Control charts ; EWMA ; Mean ; Monitoring ; Process controls ; Statistical analysis ; Statistical process control</subject><ispartof>Quality and reliability engineering international, 2022-02, Vol.38 (1), p.248-263</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</citedby><cites>FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</cites><orcidid>0000-0003-2882-221X ; 0000-0002-2344-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Noor‐ul‐Amin, Muhammad</creatorcontrib><creatorcontrib>Arshad, Asma</creatorcontrib><creatorcontrib>Hanif, Muhammad</creatorcontrib><title>A function based adaptive EWMA mean monitoring control chart</title><title>Quality and reliability engineering international</title><description>Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept.</description><subject>Adaptive control</subject><subject>adaptive EWMA</subject><subject>average run length</subject><subject>Continuity (mathematics)</subject><subject>control chart</subject><subject>Control charts</subject><subject>EWMA</subject><subject>Mean</subject><subject>Monitoring</subject><subject>Process controls</subject><subject>Statistical analysis</subject><subject>Statistical process control</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5mcmk4CbUloVKqIoLkMmk6tT2qRNpkrf3tS6dXU3H-dwD0KXlIwoIexmE92Iqbo8QgNKlCqo4PIYDUhdykISWp-is5QWhGSs5ADdjjFsve274HFjkmuxac26774cnr4_jvHKGY9XwXd9iJ3_wDb4PoYltp8m9ufoBMwyuYu_O0Rvs-nr5L6YP909TMbzwjLFy8JVzFSi4VRBUzMOVlWKADAAAaqWnLeCgTEWhGhYK5VwslSigtJVjkFt-BBdHXLXMWy2LvV6EbbR50rNBMuPqByb1fVB2RhSig70OnYrE3eaEr3fRudt9H6bTIsD_e6Wbvev088v01__A-raZFk</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Noor‐ul‐Amin, Muhammad</creator><creator>Arshad, Asma</creator><creator>Hanif, Muhammad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-2882-221X</orcidid><orcidid>https://orcid.org/0000-0002-2344-1920</orcidid></search><sort><creationdate>202202</creationdate><title>A function based adaptive EWMA mean monitoring control chart</title><author>Noor‐ul‐Amin, Muhammad ; Arshad, Asma ; Hanif, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>adaptive EWMA</topic><topic>average run length</topic><topic>Continuity (mathematics)</topic><topic>control chart</topic><topic>Control charts</topic><topic>EWMA</topic><topic>Mean</topic><topic>Monitoring</topic><topic>Process controls</topic><topic>Statistical analysis</topic><topic>Statistical process control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noor‐ul‐Amin, Muhammad</creatorcontrib><creatorcontrib>Arshad, Asma</creatorcontrib><creatorcontrib>Hanif, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noor‐ul‐Amin, Muhammad</au><au>Arshad, Asma</au><au>Hanif, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A function based adaptive EWMA mean monitoring control chart</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2022-02</date><risdate>2022</risdate><volume>38</volume><issue>1</issue><spage>248</spage><epage>263</epage><pages>248-263</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Adaptive control charts are getting remarkable place in statistical process control for monitoring production systems with efficiently simple design schemes. These tools are preferred to get rapid detection of shifts in manufacturing items. In this paper, a new exponentially weighted moving average function‐based adaptive control chart is proposed. The idea of design is to determine plotting exponentially weighted moving average (EWMA) statistic smoothing constant value as per system arising shift magnitude through a continuous function. As a result, the process mean shift of any size can be catered in a rapid manner than other counterparts. The Monte Carlo simulations are performed to determine the run‐length profiles of the proposed chart and the efficacy of the chart is assessed through average run length, standard deviation of run length, and the percentiles of run length. A comparative discussion with the existing adaptive EWMA (AEWMA) charts proved the efficacy of the concept for all types of small to moderate and large shifts in the favor of the concept. The proposed chart application is explained with the help of an illustrative example and a real‐life industrial dataset to get a deep insight into the concept.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2974</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2882-221X</orcidid><orcidid>https://orcid.org/0000-0002-2344-1920</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2022-02, Vol.38 (1), p.248-263 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2620099723 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Adaptive control adaptive EWMA average run length Continuity (mathematics) control chart Control charts EWMA Mean Monitoring Process controls Statistical analysis Statistical process control |
title | A function based adaptive EWMA mean monitoring control chart |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20function%20based%20adaptive%20EWMA%20mean%20monitoring%20control%20chart&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Noor%E2%80%90ul%E2%80%90Amin,%20Muhammad&rft.date=2022-02&rft.volume=38&rft.issue=1&rft.spage=248&rft.epage=263&rft.pages=248-263&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2974&rft_dat=%3Cproquest_cross%3E2620099723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-e52a56b319fb723fc9590ff2ff6f97833d62faacf66b2d896e84965f4e5e2f7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620099723&rft_id=info:pmid/&rfr_iscdi=true |