Loading…
Fixed-time convergent sliding-modes-based differentiators
Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most al...
Saved in:
Published in: | Communications in nonlinear science & numerical simulation 2022-01, Vol.104, p.106033, Article 106033 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3 |
container_end_page | |
container_issue | |
container_start_page | 106033 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 104 |
creator | Djennoune, Said Bettayeb, Maamar Al-Saggaf, Ubaid Muhsen |
description | Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed.
•Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties. |
doi_str_mv | 10.1016/j.cnsns.2021.106033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620432689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570421003452</els_id><sourcerecordid>2620432689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMQCMEEmPwC7hM4pySjzZpDhzQxABpEhc4R2niTKm2dCTdBP-ejHLmZMv2s-WH0C0lFSVU3PeVjTnmihFGS0UQzs_QjLayxZLJ-rzkhEjcSFJfoquce1Io1dQzpFbhCxweww4WdohHSBuI4yJvgwtxg3eDg4w7k8EtXPAeUukGMw4pX6MLb7YZbv7iHH2snt6XL3j99vy6fFxjyzkdsYBGcUuMVbxxihpHO8Y7J51spFO-8zUBQZVngkMHLfdWeQPcgVCE1GD4HN1Ne_dp-DxAHnU_HFIsJzUTjNSciVaVKT5N2TTknMDrfQo7k741JfrkSPf615E-OdKTo0I9TBSUB44Bks42QLTgQgI7ajeEf_kfkEtxLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620432689</pqid></control><display><type>article</type><title>Fixed-time convergent sliding-modes-based differentiators</title><source>ScienceDirect Journals</source><creator>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</creator><creatorcontrib>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</creatorcontrib><description>Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed.
•Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2021.106033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Convergence ; Differentiators ; Errors ; Estimating techniques ; Fixed-time observers ; Homogeneity ; Initial conditions ; Liapunov functions ; Lyapunov functions ; Mathematical functions ; Modulating functions ; Noise ; Noise measurement ; Sliding modes ; Time dependence</subject><ispartof>Communications in nonlinear science & numerical simulation, 2022-01, Vol.104, p.106033, Article 106033</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</citedby><cites>FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</cites><orcidid>0000-0002-2925-5184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Djennoune, Said</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid Muhsen</creatorcontrib><title>Fixed-time convergent sliding-modes-based differentiators</title><title>Communications in nonlinear science & numerical simulation</title><description>Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed.
•Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Differentiators</subject><subject>Errors</subject><subject>Estimating techniques</subject><subject>Fixed-time observers</subject><subject>Homogeneity</subject><subject>Initial conditions</subject><subject>Liapunov functions</subject><subject>Lyapunov functions</subject><subject>Mathematical functions</subject><subject>Modulating functions</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Sliding modes</subject><subject>Time dependence</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMQCMEEmPwC7hM4pySjzZpDhzQxABpEhc4R2niTKm2dCTdBP-ejHLmZMv2s-WH0C0lFSVU3PeVjTnmihFGS0UQzs_QjLayxZLJ-rzkhEjcSFJfoquce1Io1dQzpFbhCxweww4WdohHSBuI4yJvgwtxg3eDg4w7k8EtXPAeUukGMw4pX6MLb7YZbv7iHH2snt6XL3j99vy6fFxjyzkdsYBGcUuMVbxxihpHO8Y7J51spFO-8zUBQZVngkMHLfdWeQPcgVCE1GD4HN1Ne_dp-DxAHnU_HFIsJzUTjNSciVaVKT5N2TTknMDrfQo7k741JfrkSPf615E-OdKTo0I9TBSUB44Bks42QLTgQgI7ajeEf_kfkEtxLg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Djennoune, Said</creator><creator>Bettayeb, Maamar</creator><creator>Al-Saggaf, Ubaid Muhsen</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid></search><sort><creationdate>202201</creationdate><title>Fixed-time convergent sliding-modes-based differentiators</title><author>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Differentiators</topic><topic>Errors</topic><topic>Estimating techniques</topic><topic>Fixed-time observers</topic><topic>Homogeneity</topic><topic>Initial conditions</topic><topic>Liapunov functions</topic><topic>Lyapunov functions</topic><topic>Mathematical functions</topic><topic>Modulating functions</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Sliding modes</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djennoune, Said</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid Muhsen</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djennoune, Said</au><au>Bettayeb, Maamar</au><au>Al-Saggaf, Ubaid Muhsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-time convergent sliding-modes-based differentiators</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2022-01</date><risdate>2022</risdate><volume>104</volume><spage>106033</spage><pages>106033-</pages><artnum>106033</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed.
•Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2021.106033</doi><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2022-01, Vol.104, p.106033, Article 106033 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_journals_2620432689 |
source | ScienceDirect Journals |
subjects | Algorithms Convergence Differentiators Errors Estimating techniques Fixed-time observers Homogeneity Initial conditions Liapunov functions Lyapunov functions Mathematical functions Modulating functions Noise Noise measurement Sliding modes Time dependence |
title | Fixed-time convergent sliding-modes-based differentiators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-time%20convergent%20sliding-modes-based%20differentiators&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Djennoune,%20Said&rft.date=2022-01&rft.volume=104&rft.spage=106033&rft.pages=106033-&rft.artnum=106033&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2021.106033&rft_dat=%3Cproquest_cross%3E2620432689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620432689&rft_id=info:pmid/&rfr_iscdi=true |