Loading…

Fixed-time convergent sliding-modes-based differentiators

Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most al...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2022-01, Vol.104, p.106033, Article 106033
Main Authors: Djennoune, Said, Bettayeb, Maamar, Al-Saggaf, Ubaid Muhsen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3
cites cdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3
container_end_page
container_issue
container_start_page 106033
container_title Communications in nonlinear science & numerical simulation
container_volume 104
creator Djennoune, Said
Bettayeb, Maamar
Al-Saggaf, Ubaid Muhsen
description Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed. •Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties.
doi_str_mv 10.1016/j.cnsns.2021.106033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620432689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570421003452</els_id><sourcerecordid>2620432689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMQCMEEmPwC7hM4pySjzZpDhzQxABpEhc4R2niTKm2dCTdBP-ejHLmZMv2s-WH0C0lFSVU3PeVjTnmihFGS0UQzs_QjLayxZLJ-rzkhEjcSFJfoquce1Io1dQzpFbhCxweww4WdohHSBuI4yJvgwtxg3eDg4w7k8EtXPAeUukGMw4pX6MLb7YZbv7iHH2snt6XL3j99vy6fFxjyzkdsYBGcUuMVbxxihpHO8Y7J51spFO-8zUBQZVngkMHLfdWeQPcgVCE1GD4HN1Ne_dp-DxAHnU_HFIsJzUTjNSciVaVKT5N2TTknMDrfQo7k741JfrkSPf615E-OdKTo0I9TBSUB44Bks42QLTgQgI7ajeEf_kfkEtxLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620432689</pqid></control><display><type>article</type><title>Fixed-time convergent sliding-modes-based differentiators</title><source>ScienceDirect Journals</source><creator>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</creator><creatorcontrib>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</creatorcontrib><description>Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed. •Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2021.106033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Convergence ; Differentiators ; Errors ; Estimating techniques ; Fixed-time observers ; Homogeneity ; Initial conditions ; Liapunov functions ; Lyapunov functions ; Mathematical functions ; Modulating functions ; Noise ; Noise measurement ; Sliding modes ; Time dependence</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2022-01, Vol.104, p.106033, Article 106033</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</citedby><cites>FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</cites><orcidid>0000-0002-2925-5184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Djennoune, Said</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid Muhsen</creatorcontrib><title>Fixed-time convergent sliding-modes-based differentiators</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed. •Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Differentiators</subject><subject>Errors</subject><subject>Estimating techniques</subject><subject>Fixed-time observers</subject><subject>Homogeneity</subject><subject>Initial conditions</subject><subject>Liapunov functions</subject><subject>Lyapunov functions</subject><subject>Mathematical functions</subject><subject>Modulating functions</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Sliding modes</subject><subject>Time dependence</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMQCMEEmPwC7hM4pySjzZpDhzQxABpEhc4R2niTKm2dCTdBP-ejHLmZMv2s-WH0C0lFSVU3PeVjTnmihFGS0UQzs_QjLayxZLJ-rzkhEjcSFJfoquce1Io1dQzpFbhCxweww4WdohHSBuI4yJvgwtxg3eDg4w7k8EtXPAeUukGMw4pX6MLb7YZbv7iHH2snt6XL3j99vy6fFxjyzkdsYBGcUuMVbxxihpHO8Y7J51spFO-8zUBQZVngkMHLfdWeQPcgVCE1GD4HN1Ne_dp-DxAHnU_HFIsJzUTjNSciVaVKT5N2TTknMDrfQo7k741JfrkSPf615E-OdKTo0I9TBSUB44Bks42QLTgQgI7ajeEf_kfkEtxLg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Djennoune, Said</creator><creator>Bettayeb, Maamar</creator><creator>Al-Saggaf, Ubaid Muhsen</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid></search><sort><creationdate>202201</creationdate><title>Fixed-time convergent sliding-modes-based differentiators</title><author>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Differentiators</topic><topic>Errors</topic><topic>Estimating techniques</topic><topic>Fixed-time observers</topic><topic>Homogeneity</topic><topic>Initial conditions</topic><topic>Liapunov functions</topic><topic>Lyapunov functions</topic><topic>Mathematical functions</topic><topic>Modulating functions</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Sliding modes</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djennoune, Said</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid Muhsen</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djennoune, Said</au><au>Bettayeb, Maamar</au><au>Al-Saggaf, Ubaid Muhsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-time convergent sliding-modes-based differentiators</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2022-01</date><risdate>2022</risdate><volume>104</volume><spage>106033</spage><pages>106033-</pages><artnum>106033</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed. •Development of innovative sliding-modes-based arbitrary order differentiators.•The predefined convergence time is chosen whatever initial estimation errors.•Time dependant transformation is used to annihilate initial estimation errors.•Convergence is based on Lyapunov theory and homogeneity properties.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2021.106033</doi><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2022-01, Vol.104, p.106033, Article 106033
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2620432689
source ScienceDirect Journals
subjects Algorithms
Convergence
Differentiators
Errors
Estimating techniques
Fixed-time observers
Homogeneity
Initial conditions
Liapunov functions
Lyapunov functions
Mathematical functions
Modulating functions
Noise
Noise measurement
Sliding modes
Time dependence
title Fixed-time convergent sliding-modes-based differentiators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-time%20convergent%20sliding-modes-based%20differentiators&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Djennoune,%20Said&rft.date=2022-01&rft.volume=104&rft.spage=106033&rft.pages=106033-&rft.artnum=106033&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2021.106033&rft_dat=%3Cproquest_cross%3E2620432689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-6e593c0ac935d91ad1b23bd7d757d9fbf40e619f263ebe83fc9fae3de69004ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620432689&rft_id=info:pmid/&rfr_iscdi=true