Loading…
Effect of organic capping on defect induced ferromagnetism in ZnO nanoparticles
We report the possibility of room temperature d0Dilute Magnetic Semiconductor (d0DMS) behavior in organic capped Zinc Oxide (ZnO) nanoparticles. The uncapped and organic capped ZnO nanoparticles were prepared through a simple chemical synthesis technique. Tri-n-Octyl Phosphine Oxide (TOPO) and Dodec...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2022-01, Vol.624, p.413379, Article 413379 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the possibility of room temperature d0Dilute Magnetic Semiconductor (d0DMS) behavior in organic capped Zinc Oxide (ZnO) nanoparticles. The uncapped and organic capped ZnO nanoparticles were prepared through a simple chemical synthesis technique. Tri-n-Octyl Phosphine Oxide (TOPO) and Dodecyle amine (DDA) were used as the capping agents. X-ray diffraction studies reveal that the organically capped nanoparticles were compressively strained. X-ray Photoelectron spectroscopy demonstrated that strain in the nanoparticles arise as the capping promotes vacancy sites for oxygen in ZnO nanocrystals. The magnetic measurements showed a room temperature ferromagnetic ordering in the as prepared ZnO nanoparticles samples. The observed ferromagnetism can be mainly attributed to positional defects in ZnO nanocrystals. In addition, the surface electronic configuration, which is modified by the capping molecules wrapped on the surface of ZnO nanoparticles, also has a key role in the origin of ferromagnetism. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2021.413379 |