Loading…

Effect of annealing temperature on the performance of water motion energy harvesting in n-type silicon thin film by magnetron sputtering

Harvesting energy through water motion on solid surface is significantly important due to the energy generation intermittency of the usually used energy transducers. In this paper, n -type silicon thin film is fabricated through magnetron sputtering followed by rapid thermal processing under differe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2022, Vol.57 (3), p.1914-1922
Main Authors: Yao, Hanyu, Wang, Lei, Chen, Xin, Jiang, Yuwei, Liu, Yushuang, Weng, Yaoyao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-bb0a75c43fa5b76a811ae138e8bcdcb0648efac6682735ce6f3c862b05a55bd03
container_end_page 1922
container_issue 3
container_start_page 1914
container_title Journal of materials science
container_volume 57
creator Yao, Hanyu
Wang, Lei
Chen, Xin
Jiang, Yuwei
Liu, Yushuang
Weng, Yaoyao
description Harvesting energy through water motion on solid surface is significantly important due to the energy generation intermittency of the usually used energy transducers. In this paper, n -type silicon thin film is fabricated through magnetron sputtering followed by rapid thermal processing under different temperatures. The influence of the annealing temperatures on film crystallinity, phase, conductivity and conductivity activation energy is systematically investigated. Moreover, the voltage outputs on different silicon films through the sliding of NaCl solution droplet are systematically discussed. With increasing the annealing temperature from 300 to 900 °C, the voltage value increases firstly and then decreases, achieving a highest value of 1060 mV on the sample annealed at 600 °C, which is much higher than that of the mostly reported carbon materials. Finally, a schematic model, which is based on the combined effect of contact potential change between NaCl solution droplet and silicon film accompanied with the variation of the film conductivity, is proposed to unveil the underlying mechanism behind voltage output on various silicon films. All the findings provide not only a platform for achieving a higher output voltage but also a mechanism for a better understanding of the water motion induced energy harvesting.
doi_str_mv 10.1007/s10853-021-06791-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2620837683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689823253</galeid><sourcerecordid>A689823253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-bb0a75c43fa5b76a811ae138e8bcdcb0648efac6682735ce6f3c862b05a55bd03</originalsourceid><addsrcrecordid>eNp9kc-O1SAUxonRxOvoC7giceWC8QCFMsvJZNRJJjHxz5pQ7qHTSUsrUPW-gY8tnZqY2RgWhMP3-ziHj5DXHM45QPsuczBKMhCcgW4vOGuekANXrWSNAfmUHACEYKLR_Dl5kfM9AKhW8AP5fR0C-kLnQF2M6MYh9rTgtGByZU1I50jLHdJ6DnOaXPS4aX-6golOcxnqPUZM_YneufQDc9kMhkgjK6cFaR7GwT941FoYxol2Jzq5PmJJtZyXtVSnyrwkz4IbM776u5-Rb--vv159ZLefPtxcXd4yLxtZWNeBa5VvZHCqa7UznDvk0qDp_NF3oBuDwXmtjWil8qiD9EaLDpRTqjuCPCNvdt8lzd_X2q-9n9cU65NWaAFGttrIqjrfVb0b0Q4xzCU5X9cRp20erKOgvdTmwggp1Aa8fQRUTcFfpXdrzvbmy-fHWrFrfZpzThjskobJpZPlYLc47R6nrXHahzhtUyG5Q3nZvgvTv77_Q_0BvtKkvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620837683</pqid></control><display><type>article</type><title>Effect of annealing temperature on the performance of water motion energy harvesting in n-type silicon thin film by magnetron sputtering</title><source>Springer Nature</source><creator>Yao, Hanyu ; Wang, Lei ; Chen, Xin ; Jiang, Yuwei ; Liu, Yushuang ; Weng, Yaoyao</creator><creatorcontrib>Yao, Hanyu ; Wang, Lei ; Chen, Xin ; Jiang, Yuwei ; Liu, Yushuang ; Weng, Yaoyao</creatorcontrib><description>Harvesting energy through water motion on solid surface is significantly important due to the energy generation intermittency of the usually used energy transducers. In this paper, n -type silicon thin film is fabricated through magnetron sputtering followed by rapid thermal processing under different temperatures. The influence of the annealing temperatures on film crystallinity, phase, conductivity and conductivity activation energy is systematically investigated. Moreover, the voltage outputs on different silicon films through the sliding of NaCl solution droplet are systematically discussed. With increasing the annealing temperature from 300 to 900 °C, the voltage value increases firstly and then decreases, achieving a highest value of 1060 mV on the sample annealed at 600 °C, which is much higher than that of the mostly reported carbon materials. Finally, a schematic model, which is based on the combined effect of contact potential change between NaCl solution droplet and silicon film accompanied with the variation of the film conductivity, is proposed to unveil the underlying mechanism behind voltage output on various silicon films. All the findings provide not only a platform for achieving a higher output voltage but also a mechanism for a better understanding of the water motion induced energy harvesting.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06791-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Analysis ; Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Contact potentials ; Crystallography and Scattering Methods ; Dielectric films ; Droplets ; Electric potential ; Electric power production ; Electric properties ; Electronic Materials ; Energy ; Energy harvesting ; Magnetron sputtering ; Materials Science ; Polymer Sciences ; Silicon ; Silicon films ; Sodium chloride ; Solid Mechanics ; Solid surfaces ; Thin films ; Transducers ; Voltage</subject><ispartof>Journal of materials science, 2022, Vol.57 (3), p.1914-1922</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-bb0a75c43fa5b76a811ae138e8bcdcb0648efac6682735ce6f3c862b05a55bd03</cites><orcidid>0000-0001-7577-4551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yao, Hanyu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Jiang, Yuwei</creatorcontrib><creatorcontrib>Liu, Yushuang</creatorcontrib><creatorcontrib>Weng, Yaoyao</creatorcontrib><title>Effect of annealing temperature on the performance of water motion energy harvesting in n-type silicon thin film by magnetron sputtering</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Harvesting energy through water motion on solid surface is significantly important due to the energy generation intermittency of the usually used energy transducers. In this paper, n -type silicon thin film is fabricated through magnetron sputtering followed by rapid thermal processing under different temperatures. The influence of the annealing temperatures on film crystallinity, phase, conductivity and conductivity activation energy is systematically investigated. Moreover, the voltage outputs on different silicon films through the sliding of NaCl solution droplet are systematically discussed. With increasing the annealing temperature from 300 to 900 °C, the voltage value increases firstly and then decreases, achieving a highest value of 1060 mV on the sample annealed at 600 °C, which is much higher than that of the mostly reported carbon materials. Finally, a schematic model, which is based on the combined effect of contact potential change between NaCl solution droplet and silicon film accompanied with the variation of the film conductivity, is proposed to unveil the underlying mechanism behind voltage output on various silicon films. All the findings provide not only a platform for achieving a higher output voltage but also a mechanism for a better understanding of the water motion induced energy harvesting.</description><subject>Activation energy</subject><subject>Analysis</subject><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Contact potentials</subject><subject>Crystallography and Scattering Methods</subject><subject>Dielectric films</subject><subject>Droplets</subject><subject>Electric potential</subject><subject>Electric power production</subject><subject>Electric properties</subject><subject>Electronic Materials</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Magnetron sputtering</subject><subject>Materials Science</subject><subject>Polymer Sciences</subject><subject>Silicon</subject><subject>Silicon films</subject><subject>Sodium chloride</subject><subject>Solid Mechanics</subject><subject>Solid surfaces</subject><subject>Thin films</subject><subject>Transducers</subject><subject>Voltage</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O1SAUxonRxOvoC7giceWC8QCFMsvJZNRJJjHxz5pQ7qHTSUsrUPW-gY8tnZqY2RgWhMP3-ziHj5DXHM45QPsuczBKMhCcgW4vOGuekANXrWSNAfmUHACEYKLR_Dl5kfM9AKhW8AP5fR0C-kLnQF2M6MYh9rTgtGByZU1I50jLHdJ6DnOaXPS4aX-6golOcxnqPUZM_YneufQDc9kMhkgjK6cFaR7GwT941FoYxol2Jzq5PmJJtZyXtVSnyrwkz4IbM776u5-Rb--vv159ZLefPtxcXd4yLxtZWNeBa5VvZHCqa7UznDvk0qDp_NF3oBuDwXmtjWil8qiD9EaLDpRTqjuCPCNvdt8lzd_X2q-9n9cU65NWaAFGttrIqjrfVb0b0Q4xzCU5X9cRp20erKOgvdTmwggp1Aa8fQRUTcFfpXdrzvbmy-fHWrFrfZpzThjskobJpZPlYLc47R6nrXHahzhtUyG5Q3nZvgvTv77_Q_0BvtKkvg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yao, Hanyu</creator><creator>Wang, Lei</creator><creator>Chen, Xin</creator><creator>Jiang, Yuwei</creator><creator>Liu, Yushuang</creator><creator>Weng, Yaoyao</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7577-4551</orcidid></search><sort><creationdate>2022</creationdate><title>Effect of annealing temperature on the performance of water motion energy harvesting in n-type silicon thin film by magnetron sputtering</title><author>Yao, Hanyu ; Wang, Lei ; Chen, Xin ; Jiang, Yuwei ; Liu, Yushuang ; Weng, Yaoyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-bb0a75c43fa5b76a811ae138e8bcdcb0648efac6682735ce6f3c862b05a55bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activation energy</topic><topic>Analysis</topic><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Contact potentials</topic><topic>Crystallography and Scattering Methods</topic><topic>Dielectric films</topic><topic>Droplets</topic><topic>Electric potential</topic><topic>Electric power production</topic><topic>Electric properties</topic><topic>Electronic Materials</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Magnetron sputtering</topic><topic>Materials Science</topic><topic>Polymer Sciences</topic><topic>Silicon</topic><topic>Silicon films</topic><topic>Sodium chloride</topic><topic>Solid Mechanics</topic><topic>Solid surfaces</topic><topic>Thin films</topic><topic>Transducers</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Hanyu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Jiang, Yuwei</creatorcontrib><creatorcontrib>Liu, Yushuang</creatorcontrib><creatorcontrib>Weng, Yaoyao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Hanyu</au><au>Wang, Lei</au><au>Chen, Xin</au><au>Jiang, Yuwei</au><au>Liu, Yushuang</au><au>Weng, Yaoyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of annealing temperature on the performance of water motion energy harvesting in n-type silicon thin film by magnetron sputtering</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022</date><risdate>2022</risdate><volume>57</volume><issue>3</issue><spage>1914</spage><epage>1922</epage><pages>1914-1922</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Harvesting energy through water motion on solid surface is significantly important due to the energy generation intermittency of the usually used energy transducers. In this paper, n -type silicon thin film is fabricated through magnetron sputtering followed by rapid thermal processing under different temperatures. The influence of the annealing temperatures on film crystallinity, phase, conductivity and conductivity activation energy is systematically investigated. Moreover, the voltage outputs on different silicon films through the sliding of NaCl solution droplet are systematically discussed. With increasing the annealing temperature from 300 to 900 °C, the voltage value increases firstly and then decreases, achieving a highest value of 1060 mV on the sample annealed at 600 °C, which is much higher than that of the mostly reported carbon materials. Finally, a schematic model, which is based on the combined effect of contact potential change between NaCl solution droplet and silicon film accompanied with the variation of the film conductivity, is proposed to unveil the underlying mechanism behind voltage output on various silicon films. All the findings provide not only a platform for achieving a higher output voltage but also a mechanism for a better understanding of the water motion induced energy harvesting.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06791-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7577-4551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022, Vol.57 (3), p.1914-1922
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2620837683
source Springer Nature
subjects Activation energy
Analysis
Annealing
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Contact potentials
Crystallography and Scattering Methods
Dielectric films
Droplets
Electric potential
Electric power production
Electric properties
Electronic Materials
Energy
Energy harvesting
Magnetron sputtering
Materials Science
Polymer Sciences
Silicon
Silicon films
Sodium chloride
Solid Mechanics
Solid surfaces
Thin films
Transducers
Voltage
title Effect of annealing temperature on the performance of water motion energy harvesting in n-type silicon thin film by magnetron sputtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20annealing%20temperature%20on%20the%20performance%20of%20water%20motion%20energy%20harvesting%20in%20n-type%20silicon%20thin%20film%20by%20magnetron%20sputtering&rft.jtitle=Journal%20of%20materials%20science&rft.au=Yao,%20Hanyu&rft.date=2022&rft.volume=57&rft.issue=3&rft.spage=1914&rft.epage=1922&rft.pages=1914-1922&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06791-4&rft_dat=%3Cgale_proqu%3EA689823253%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-bb0a75c43fa5b76a811ae138e8bcdcb0648efac6682735ce6f3c862b05a55bd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620837683&rft_id=info:pmid/&rft_galeid=A689823253&rfr_iscdi=true