Loading…
Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network
Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the el...
Saved in:
Published in: | Physics of plasmas 2022-01, Vol.29 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Gan, Liping Guo, Lixin Guo, Linjing Li, Jiangting |
description | Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments. |
doi_str_mv | 10.1063/5.0075450 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620888289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620888289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</originalsourceid><addsrcrecordid>eNqd0FFLwzAQB_AgCs7pg9-g4JNC5yVNmvRRx9TBwBcF30LaXmdnl9SkncxPb-cGvvt0x_HjjvsTcklhQiFNbsUEQAou4IiMKKgslqnkx7teQpym_O2UnIWwAgCeCjUiem7f3dot0aLrQ9Q2JqxNhA0WnXc2KtGGuttGtd2gD_UwyU3AMhqae7PFUBsbeVz2jfH1t-l2wGLvTTOU7sv5j3NyUpkm4MWhjsnrw-xl-hQvnh_n07tFXCRMdjEDwQRVMskpYMYk5pypnJpcGRRCplzmjBmBXBmelLRCUwhQSDkVNCupSMbkar-39e6zx9Dpleu9HU5qljJQSjGVDep6rwrvQvBY6dbXa-O3moLe5aeFPuQ32Ju9DUXd_b72P7xx_g_qtqySHyh3fzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620888289</pqid></control><display><type>article</type><title>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Gan, Liping ; Guo, Lixin ; Guo, Linjing ; Li, Jiangting</creator><creatorcontrib>Gan, Liping ; Guo, Lixin ; Guo, Linjing ; Li, Jiangting</creatorcontrib><description>Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0075450</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bayesian analysis ; Electric fields ; Electromagnetic radiation ; Electron density ; Electrons ; Error analysis ; Microstrip antennas ; Neural networks ; Plasma ; Plasma physics ; Regularization</subject><ispartof>Physics of plasmas, 2022-01, Vol.29 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</citedby><cites>FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</cites><orcidid>0000-0003-3801-1058 ; 0000-0002-8519-2800 ; 0000-0002-9764-2661 ; 0000-0003-3854-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0075450$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Gan, Liping</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Guo, Linjing</creatorcontrib><creatorcontrib>Li, Jiangting</creatorcontrib><title>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</title><title>Physics of plasmas</title><description>Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments.</description><subject>Bayesian analysis</subject><subject>Electric fields</subject><subject>Electromagnetic radiation</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Error analysis</subject><subject>Microstrip antennas</subject><subject>Neural networks</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Regularization</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0FFLwzAQB_AgCs7pg9-g4JNC5yVNmvRRx9TBwBcF30LaXmdnl9SkncxPb-cGvvt0x_HjjvsTcklhQiFNbsUEQAou4IiMKKgslqnkx7teQpym_O2UnIWwAgCeCjUiem7f3dot0aLrQ9Q2JqxNhA0WnXc2KtGGuttGtd2gD_UwyU3AMhqae7PFUBsbeVz2jfH1t-l2wGLvTTOU7sv5j3NyUpkm4MWhjsnrw-xl-hQvnh_n07tFXCRMdjEDwQRVMskpYMYk5pypnJpcGRRCplzmjBmBXBmelLRCUwhQSDkVNCupSMbkar-39e6zx9Dpleu9HU5qljJQSjGVDep6rwrvQvBY6dbXa-O3moLe5aeFPuQ32Ju9DUXd_b72P7xx_g_qtqySHyh3fzc</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Gan, Liping</creator><creator>Guo, Lixin</creator><creator>Guo, Linjing</creator><creator>Li, Jiangting</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3801-1058</orcidid><orcidid>https://orcid.org/0000-0002-8519-2800</orcidid><orcidid>https://orcid.org/0000-0002-9764-2661</orcidid><orcidid>https://orcid.org/0000-0003-3854-206X</orcidid></search><sort><creationdate>202201</creationdate><title>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</title><author>Gan, Liping ; Guo, Lixin ; Guo, Linjing ; Li, Jiangting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Electric fields</topic><topic>Electromagnetic radiation</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Error analysis</topic><topic>Microstrip antennas</topic><topic>Neural networks</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Liping</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Guo, Linjing</creatorcontrib><creatorcontrib>Li, Jiangting</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Liping</au><au>Guo, Lixin</au><au>Guo, Linjing</au><au>Li, Jiangting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</atitle><jtitle>Physics of plasmas</jtitle><date>2022-01</date><risdate>2022</risdate><volume>29</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0075450</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3801-1058</orcidid><orcidid>https://orcid.org/0000-0002-8519-2800</orcidid><orcidid>https://orcid.org/0000-0002-9764-2661</orcidid><orcidid>https://orcid.org/0000-0003-3854-206X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-01, Vol.29 (1) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2620888289 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Bayesian analysis Electric fields Electromagnetic radiation Electron density Electrons Error analysis Microstrip antennas Neural networks Plasma Plasma physics Regularization |
title | Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhomogeneous%20plasma%20electron%20density%20inversion%20based%20on%20Bayesian%20regularization%20neural%20network&rft.jtitle=Physics%20of%20plasmas&rft.au=Gan,%20Liping&rft.date=2022-01&rft.volume=29&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0075450&rft_dat=%3Cproquest_cross%3E2620888289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620888289&rft_id=info:pmid/&rfr_iscdi=true |