Loading…

Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network

Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the el...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2022-01, Vol.29 (1)
Main Authors: Gan, Liping, Guo, Lixin, Guo, Linjing, Li, Jiangting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153
cites cdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153
container_end_page
container_issue 1
container_start_page
container_title Physics of plasmas
container_volume 29
creator Gan, Liping
Guo, Lixin
Guo, Linjing
Li, Jiangting
description Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments.
doi_str_mv 10.1063/5.0075450
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620888289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620888289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</originalsourceid><addsrcrecordid>eNqd0FFLwzAQB_AgCs7pg9-g4JNC5yVNmvRRx9TBwBcF30LaXmdnl9SkncxPb-cGvvt0x_HjjvsTcklhQiFNbsUEQAou4IiMKKgslqnkx7teQpym_O2UnIWwAgCeCjUiem7f3dot0aLrQ9Q2JqxNhA0WnXc2KtGGuttGtd2gD_UwyU3AMhqae7PFUBsbeVz2jfH1t-l2wGLvTTOU7sv5j3NyUpkm4MWhjsnrw-xl-hQvnh_n07tFXCRMdjEDwQRVMskpYMYk5pypnJpcGRRCplzmjBmBXBmelLRCUwhQSDkVNCupSMbkar-39e6zx9Dpleu9HU5qljJQSjGVDep6rwrvQvBY6dbXa-O3moLe5aeFPuQ32Ju9DUXd_b72P7xx_g_qtqySHyh3fzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620888289</pqid></control><display><type>article</type><title>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Gan, Liping ; Guo, Lixin ; Guo, Linjing ; Li, Jiangting</creator><creatorcontrib>Gan, Liping ; Guo, Lixin ; Guo, Linjing ; Li, Jiangting</creatorcontrib><description>Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0075450</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bayesian analysis ; Electric fields ; Electromagnetic radiation ; Electron density ; Electrons ; Error analysis ; Microstrip antennas ; Neural networks ; Plasma ; Plasma physics ; Regularization</subject><ispartof>Physics of plasmas, 2022-01, Vol.29 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</citedby><cites>FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</cites><orcidid>0000-0003-3801-1058 ; 0000-0002-8519-2800 ; 0000-0002-9764-2661 ; 0000-0003-3854-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0075450$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Gan, Liping</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Guo, Linjing</creatorcontrib><creatorcontrib>Li, Jiangting</creatorcontrib><title>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</title><title>Physics of plasmas</title><description>Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments.</description><subject>Bayesian analysis</subject><subject>Electric fields</subject><subject>Electromagnetic radiation</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Error analysis</subject><subject>Microstrip antennas</subject><subject>Neural networks</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Regularization</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0FFLwzAQB_AgCs7pg9-g4JNC5yVNmvRRx9TBwBcF30LaXmdnl9SkncxPb-cGvvt0x_HjjvsTcklhQiFNbsUEQAou4IiMKKgslqnkx7teQpym_O2UnIWwAgCeCjUiem7f3dot0aLrQ9Q2JqxNhA0WnXc2KtGGuttGtd2gD_UwyU3AMhqae7PFUBsbeVz2jfH1t-l2wGLvTTOU7sv5j3NyUpkm4MWhjsnrw-xl-hQvnh_n07tFXCRMdjEDwQRVMskpYMYk5pypnJpcGRRCplzmjBmBXBmelLRCUwhQSDkVNCupSMbkar-39e6zx9Dpleu9HU5qljJQSjGVDep6rwrvQvBY6dbXa-O3moLe5aeFPuQ32Ju9DUXd_b72P7xx_g_qtqySHyh3fzc</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Gan, Liping</creator><creator>Guo, Lixin</creator><creator>Guo, Linjing</creator><creator>Li, Jiangting</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3801-1058</orcidid><orcidid>https://orcid.org/0000-0002-8519-2800</orcidid><orcidid>https://orcid.org/0000-0002-9764-2661</orcidid><orcidid>https://orcid.org/0000-0003-3854-206X</orcidid></search><sort><creationdate>202201</creationdate><title>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</title><author>Gan, Liping ; Guo, Lixin ; Guo, Linjing ; Li, Jiangting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Electric fields</topic><topic>Electromagnetic radiation</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Error analysis</topic><topic>Microstrip antennas</topic><topic>Neural networks</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Liping</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Guo, Linjing</creatorcontrib><creatorcontrib>Li, Jiangting</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Liping</au><au>Guo, Lixin</au><au>Guo, Linjing</au><au>Li, Jiangting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network</atitle><jtitle>Physics of plasmas</jtitle><date>2022-01</date><risdate>2022</risdate><volume>29</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Electron density is one of the most important parameters for characterizing plasma properties, so obtaining accurate electron density is a prerequisite for studying the interaction between plasma and the electromagnetic waves. This paper presents the effects of different electron densities on the electric field distribution of a microstrip antenna with a center frequency of 2.45 GHz. Then, on the basis of the integrated model of plasma and the microstrip antenna, the Bayesian regularization neural network (BRNN) is used to retrieve the electron density of inhomogeneous plasma. Furthermore, the performance of the proposed approach is evaluated and analyzed by comparison with Levenberg–Marquardt (LM) and Scaled Conjugate Gradient (SCG) neural networks. The results show that the BRNN provides better performance than LM and SCG neural networks to retrieve plasma electron density based on the electric field intensity at fewer spatial positions. The accurate distribution of the electron density of inhomogeneous plasma can be obtained using BRNN. In addition, the greater the range variation of electron density, the greater the relative inversion error. This study provides an important theoretical basis for the diagnosis of electron density for inhomogeneous plasma in experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0075450</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3801-1058</orcidid><orcidid>https://orcid.org/0000-0002-8519-2800</orcidid><orcidid>https://orcid.org/0000-0002-9764-2661</orcidid><orcidid>https://orcid.org/0000-0003-3854-206X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2022-01, Vol.29 (1)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2620888289
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Bayesian analysis
Electric fields
Electromagnetic radiation
Electron density
Electrons
Error analysis
Microstrip antennas
Neural networks
Plasma
Plasma physics
Regularization
title Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhomogeneous%20plasma%20electron%20density%20inversion%20based%20on%20Bayesian%20regularization%20neural%20network&rft.jtitle=Physics%20of%20plasmas&rft.au=Gan,%20Liping&rft.date=2022-01&rft.volume=29&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0075450&rft_dat=%3Cproquest_cross%3E2620888289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-205251873b10e927eb428b1ab8ae557647b22a5e48a43d1feac508e141519d153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620888289&rft_id=info:pmid/&rfr_iscdi=true