Loading…

Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures

We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022-01, Vol.60, p.1-18
Main Authors: Di Martino, Thomas, Guinvarc'h, Regis, Thirion-Lefevre, Laetitia, Koeniguer, Elise Colin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3
cites cdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3
container_end_page 18
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Di Martino, Thomas
Guinvarc'h, Regis
Thirion-Lefevre, Laetitia
Koeniguer, Elise Colin
description We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.
doi_str_mv 10.1109/TGRS.2021.3100637
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2621064317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508501</ieee_id><sourcerecordid>2621064317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</originalsourceid><addsrcrecordid>eNo9kV1L5DAUhsOisKPuD1j2JuCVFx1zkqYfV1IHPxYGBGe8DjE9nY3UpibpoNf-8U0ZEQIHkud54eQl5DewJQCrL7d3j5slZxyWAhgrRPmDLEDKKmNFnh-RBYO6yHhV85_kJIQXxiCXUC7I5zViDNR5unIxuuGKXvd2aOnNe_TaROsG6jp6awekzc5bM_Vx8rqnq16HgIE-BTvsqE72sHf9NAvptZmiw8G4Fj1txrG32NLo6BZfRzfbm-aRbuxu0CkMwxk57nQf8NfXPCVPtzfb1X22frj7u2rWmRElixk3eYGmen5GwLashJFdWUioJDPppMmrjremxtp0KLtKg8lFKWtmRFWD1uKUXBxy_-lejd6-av-hnLbqvlmr-Y4JKfJCiD0k9vzAjt69TRiienGTT7sFxQsO6VcFlImCA2W8C8Fj9x0LTM29qLkXNfeivnpJzp-DYxHxm68lS4uA-A9HWoma</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064317</pqid></control><display><type>article</type><title>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Di Martino, Thomas ; Guinvarc'h, Regis ; Thirion-Lefevre, Laetitia ; Koeniguer, Elise Colin</creator><creatorcontrib>Di Martino, Thomas ; Guinvarc'h, Regis ; Thirion-Lefevre, Laetitia ; Koeniguer, Elise Colin</creatorcontrib><description>We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3100637</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agriculture ; Algorithms ; autoencoder ; Clustering ; Computer Science ; Convolution ; Engineering Sciences ; Feature extraction ; Image classification ; Machine learning ; Mathematics ; Physics ; SAR ; Semantics ; Submarine pipelines ; Synthetic aperture radar ; Task analysis ; Time series ; Time series analysis ; unsupervised classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</citedby><cites>FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</cites><orcidid>0000-0002-4853-3987 ; 0000-0002-7401-8073 ; 0000-0002-9729-0192 ; 0000-0002-9671-431X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03534633$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Martino, Thomas</creatorcontrib><creatorcontrib>Guinvarc'h, Regis</creatorcontrib><creatorcontrib>Thirion-Lefevre, Laetitia</creatorcontrib><creatorcontrib>Koeniguer, Elise Colin</creatorcontrib><title>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>autoencoder</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Mathematics</subject><subject>Physics</subject><subject>SAR</subject><subject>Semantics</subject><subject>Submarine pipelines</subject><subject>Synthetic aperture radar</subject><subject>Task analysis</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>unsupervised classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kV1L5DAUhsOisKPuD1j2JuCVFx1zkqYfV1IHPxYGBGe8DjE9nY3UpibpoNf-8U0ZEQIHkud54eQl5DewJQCrL7d3j5slZxyWAhgrRPmDLEDKKmNFnh-RBYO6yHhV85_kJIQXxiCXUC7I5zViDNR5unIxuuGKXvd2aOnNe_TaROsG6jp6awekzc5bM_Vx8rqnq16HgIE-BTvsqE72sHf9NAvptZmiw8G4Fj1txrG32NLo6BZfRzfbm-aRbuxu0CkMwxk57nQf8NfXPCVPtzfb1X22frj7u2rWmRElixk3eYGmen5GwLashJFdWUioJDPppMmrjremxtp0KLtKg8lFKWtmRFWD1uKUXBxy_-lejd6-av-hnLbqvlmr-Y4JKfJCiD0k9vzAjt69TRiienGTT7sFxQsO6VcFlImCA2W8C8Fj9x0LTM29qLkXNfeivnpJzp-DYxHxm68lS4uA-A9HWoma</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Di Martino, Thomas</creator><creator>Guinvarc'h, Regis</creator><creator>Thirion-Lefevre, Laetitia</creator><creator>Koeniguer, Elise Colin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4853-3987</orcidid><orcidid>https://orcid.org/0000-0002-7401-8073</orcidid><orcidid>https://orcid.org/0000-0002-9729-0192</orcidid><orcidid>https://orcid.org/0000-0002-9671-431X</orcidid></search><sort><creationdate>20220101</creationdate><title>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</title><author>Di Martino, Thomas ; Guinvarc'h, Regis ; Thirion-Lefevre, Laetitia ; Koeniguer, Elise Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>autoencoder</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Mathematics</topic><topic>Physics</topic><topic>SAR</topic><topic>Semantics</topic><topic>Submarine pipelines</topic><topic>Synthetic aperture radar</topic><topic>Task analysis</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>unsupervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Martino, Thomas</creatorcontrib><creatorcontrib>Guinvarc'h, Regis</creatorcontrib><creatorcontrib>Thirion-Lefevre, Laetitia</creatorcontrib><creatorcontrib>Koeniguer, Elise Colin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Martino, Thomas</au><au>Guinvarc'h, Regis</au><au>Thirion-Lefevre, Laetitia</au><au>Koeniguer, Elise Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3100637</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4853-3987</orcidid><orcidid>https://orcid.org/0000-0002-7401-8073</orcidid><orcidid>https://orcid.org/0000-0002-9729-0192</orcidid><orcidid>https://orcid.org/0000-0002-9671-431X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-18
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2621064317
source IEEE Electronic Library (IEL) Journals
subjects Agriculture
Algorithms
autoencoder
Clustering
Computer Science
Convolution
Engineering Sciences
Feature extraction
Image classification
Machine learning
Mathematics
Physics
SAR
Semantics
Submarine pipelines
Synthetic aperture radar
Task analysis
Time series
Time series analysis
unsupervised classification
title Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beets%20or%20Cotton?%20Blind%20Extraction%20of%20Fine%20Agricultural%20Classes%20Using%20a%20Convolutional%20Autoencoder%20Applied%20to%20Temporal%20SAR%20Signatures&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Di%20Martino,%20Thomas&rft.date=2022-01-01&rft.volume=60&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3100637&rft_dat=%3Cproquest_ieee_%3E2621064317%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621064317&rft_id=info:pmid/&rft_ieee_id=9508501&rfr_iscdi=true