Loading…
Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures
We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022-01, Vol.60, p.1-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3 |
container_end_page | 18 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Di Martino, Thomas Guinvarc'h, Regis Thirion-Lefevre, Laetitia Koeniguer, Elise Colin |
description | We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series. |
doi_str_mv | 10.1109/TGRS.2021.3100637 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2621064317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508501</ieee_id><sourcerecordid>2621064317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</originalsourceid><addsrcrecordid>eNo9kV1L5DAUhsOisKPuD1j2JuCVFx1zkqYfV1IHPxYGBGe8DjE9nY3UpibpoNf-8U0ZEQIHkud54eQl5DewJQCrL7d3j5slZxyWAhgrRPmDLEDKKmNFnh-RBYO6yHhV85_kJIQXxiCXUC7I5zViDNR5unIxuuGKXvd2aOnNe_TaROsG6jp6awekzc5bM_Vx8rqnq16HgIE-BTvsqE72sHf9NAvptZmiw8G4Fj1txrG32NLo6BZfRzfbm-aRbuxu0CkMwxk57nQf8NfXPCVPtzfb1X22frj7u2rWmRElixk3eYGmen5GwLashJFdWUioJDPppMmrjremxtp0KLtKg8lFKWtmRFWD1uKUXBxy_-lejd6-av-hnLbqvlmr-Y4JKfJCiD0k9vzAjt69TRiienGTT7sFxQsO6VcFlImCA2W8C8Fj9x0LTM29qLkXNfeivnpJzp-DYxHxm68lS4uA-A9HWoma</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064317</pqid></control><display><type>article</type><title>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Di Martino, Thomas ; Guinvarc'h, Regis ; Thirion-Lefevre, Laetitia ; Koeniguer, Elise Colin</creator><creatorcontrib>Di Martino, Thomas ; Guinvarc'h, Regis ; Thirion-Lefevre, Laetitia ; Koeniguer, Elise Colin</creatorcontrib><description>We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3100637</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agriculture ; Algorithms ; autoencoder ; Clustering ; Computer Science ; Convolution ; Engineering Sciences ; Feature extraction ; Image classification ; Machine learning ; Mathematics ; Physics ; SAR ; Semantics ; Submarine pipelines ; Synthetic aperture radar ; Task analysis ; Time series ; Time series analysis ; unsupervised classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</citedby><cites>FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</cites><orcidid>0000-0002-4853-3987 ; 0000-0002-7401-8073 ; 0000-0002-9729-0192 ; 0000-0002-9671-431X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03534633$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Martino, Thomas</creatorcontrib><creatorcontrib>Guinvarc'h, Regis</creatorcontrib><creatorcontrib>Thirion-Lefevre, Laetitia</creatorcontrib><creatorcontrib>Koeniguer, Elise Colin</creatorcontrib><title>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>autoencoder</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Mathematics</subject><subject>Physics</subject><subject>SAR</subject><subject>Semantics</subject><subject>Submarine pipelines</subject><subject>Synthetic aperture radar</subject><subject>Task analysis</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>unsupervised classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kV1L5DAUhsOisKPuD1j2JuCVFx1zkqYfV1IHPxYGBGe8DjE9nY3UpibpoNf-8U0ZEQIHkud54eQl5DewJQCrL7d3j5slZxyWAhgrRPmDLEDKKmNFnh-RBYO6yHhV85_kJIQXxiCXUC7I5zViDNR5unIxuuGKXvd2aOnNe_TaROsG6jp6awekzc5bM_Vx8rqnq16HgIE-BTvsqE72sHf9NAvptZmiw8G4Fj1txrG32NLo6BZfRzfbm-aRbuxu0CkMwxk57nQf8NfXPCVPtzfb1X22frj7u2rWmRElixk3eYGmen5GwLashJFdWUioJDPppMmrjremxtp0KLtKg8lFKWtmRFWD1uKUXBxy_-lejd6-av-hnLbqvlmr-Y4JKfJCiD0k9vzAjt69TRiienGTT7sFxQsO6VcFlImCA2W8C8Fj9x0LTM29qLkXNfeivnpJzp-DYxHxm68lS4uA-A9HWoma</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Di Martino, Thomas</creator><creator>Guinvarc'h, Regis</creator><creator>Thirion-Lefevre, Laetitia</creator><creator>Koeniguer, Elise Colin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4853-3987</orcidid><orcidid>https://orcid.org/0000-0002-7401-8073</orcidid><orcidid>https://orcid.org/0000-0002-9729-0192</orcidid><orcidid>https://orcid.org/0000-0002-9671-431X</orcidid></search><sort><creationdate>20220101</creationdate><title>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</title><author>Di Martino, Thomas ; Guinvarc'h, Regis ; Thirion-Lefevre, Laetitia ; Koeniguer, Elise Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>autoencoder</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Mathematics</topic><topic>Physics</topic><topic>SAR</topic><topic>Semantics</topic><topic>Submarine pipelines</topic><topic>Synthetic aperture radar</topic><topic>Task analysis</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>unsupervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Martino, Thomas</creatorcontrib><creatorcontrib>Guinvarc'h, Regis</creatorcontrib><creatorcontrib>Thirion-Lefevre, Laetitia</creatorcontrib><creatorcontrib>Koeniguer, Elise Colin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Martino, Thomas</au><au>Guinvarc'h, Regis</au><au>Thirion-Lefevre, Laetitia</au><au>Koeniguer, Elise Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3100637</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4853-3987</orcidid><orcidid>https://orcid.org/0000-0002-7401-8073</orcidid><orcidid>https://orcid.org/0000-0002-9729-0192</orcidid><orcidid>https://orcid.org/0000-0002-9671-431X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-18 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2621064317 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Agriculture Algorithms autoencoder Clustering Computer Science Convolution Engineering Sciences Feature extraction Image classification Machine learning Mathematics Physics SAR Semantics Submarine pipelines Synthetic aperture radar Task analysis Time series Time series analysis unsupervised classification |
title | Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beets%20or%20Cotton?%20Blind%20Extraction%20of%20Fine%20Agricultural%20Classes%20Using%20a%20Convolutional%20Autoencoder%20Applied%20to%20Temporal%20SAR%20Signatures&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Di%20Martino,%20Thomas&rft.date=2022-01-01&rft.volume=60&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3100637&rft_dat=%3Cproquest_ieee_%3E2621064317%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-2c46ec8bbe1ed783c5f7651850c50c18528f2dc9e9cfe5f8a1c437590c3891aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621064317&rft_id=info:pmid/&rft_ieee_id=9508501&rfr_iscdi=true |