Loading…
Activity Detection and Recognition With Passive Electric Field Sensors
Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognitio...
Saved in:
Published in: | IEEE transactions on industry applications 2022-01, Vol.58 (1), p.800-806 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903 |
container_end_page | 806 |
container_issue | 1 |
container_start_page | 800 |
container_title | IEEE transactions on industry applications |
container_volume | 58 |
creator | Noras, Maciej A. |
description | Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization. |
doi_str_mv | 10.1109/TIA.2021.3131301 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2621067047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628024</ieee_id><sourcerecordid>2621067047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</originalsourceid><addsrcrecordid>eNo9kN9LAkEQx5coyKz3oJeDns929set8yimJQhFGT0u5zpXK3Znu6fgf--aEvMwM_D5zo8vY7fAewAcH2aTQU9wAT0JKTicsQ6gxBxlYc5Zh3OUOSKqS3YV45JzUBpUh40HrvVb3-6yR2op1U2dlfUieyPXfNX-r__07Xf2Wsbot5SNVokK3mVjT6tF9k51bEK8ZhdVuYp0c8pd9jEezYbP-fTlaTIcTHMnENocjTLoSqGriuZOFxIcoK6Mor4rDBiodLoXhVpogWhIEqf0U39utC4cctll98e569D8bii2dtlsQp1WWlEI4IXhyiSKHykXmhgDVXYd_E8Zdha4Pbhlk1v24JY9uZUkd0eJJ6J_HAvR50LJPc22Y94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621067047</pqid></control><display><type>article</type><title>Activity Detection and Recognition With Passive Electric Field Sensors</title><source>IEEE Xplore (Online service)</source><creator>Noras, Maciej A.</creator><creatorcontrib>Noras, Maciej A.</creatorcontrib><description>Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2021.3131301</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; adaptive signal processing ; Detectors ; Dogs ; Electric fields ; electric-field (E-field) instrumentation ; electrostatic devices ; event detection ; Fault detection ; Human motion ; Legged locomotion ; Monitoring ; Motion perception ; Moving object recognition ; Sensor systems ; sensor systems and applications ; Sensors ; Signal processing ; Voltage</subject><ispartof>IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.800-806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</citedby><cites>FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</cites><orcidid>0000-0002-6275-5690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Noras, Maciej A.</creatorcontrib><title>Activity Detection and Recognition With Passive Electric Field Sensors</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization.</description><subject>Activity recognition</subject><subject>adaptive signal processing</subject><subject>Detectors</subject><subject>Dogs</subject><subject>Electric fields</subject><subject>electric-field (E-field) instrumentation</subject><subject>electrostatic devices</subject><subject>event detection</subject><subject>Fault detection</subject><subject>Human motion</subject><subject>Legged locomotion</subject><subject>Monitoring</subject><subject>Motion perception</subject><subject>Moving object recognition</subject><subject>Sensor systems</subject><subject>sensor systems and applications</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Voltage</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LAkEQx5coyKz3oJeDns929set8yimJQhFGT0u5zpXK3Znu6fgf--aEvMwM_D5zo8vY7fAewAcH2aTQU9wAT0JKTicsQ6gxBxlYc5Zh3OUOSKqS3YV45JzUBpUh40HrvVb3-6yR2op1U2dlfUieyPXfNX-r__07Xf2Wsbot5SNVokK3mVjT6tF9k51bEK8ZhdVuYp0c8pd9jEezYbP-fTlaTIcTHMnENocjTLoSqGriuZOFxIcoK6Mor4rDBiodLoXhVpogWhIEqf0U39utC4cctll98e569D8bii2dtlsQp1WWlEI4IXhyiSKHykXmhgDVXYd_E8Zdha4Pbhlk1v24JY9uZUkd0eJJ6J_HAvR50LJPc22Y94</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Noras, Maciej A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6275-5690</orcidid></search><sort><creationdate>202201</creationdate><title>Activity Detection and Recognition With Passive Electric Field Sensors</title><author>Noras, Maciej A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity recognition</topic><topic>adaptive signal processing</topic><topic>Detectors</topic><topic>Dogs</topic><topic>Electric fields</topic><topic>electric-field (E-field) instrumentation</topic><topic>electrostatic devices</topic><topic>event detection</topic><topic>Fault detection</topic><topic>Human motion</topic><topic>Legged locomotion</topic><topic>Monitoring</topic><topic>Motion perception</topic><topic>Moving object recognition</topic><topic>Sensor systems</topic><topic>sensor systems and applications</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noras, Maciej A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noras, Maciej A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity Detection and Recognition With Passive Electric Field Sensors</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-01</date><risdate>2022</risdate><volume>58</volume><issue>1</issue><spage>800</spage><epage>806</epage><pages>800-806</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2021.3131301</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6275-5690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.800-806 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_2621067047 |
source | IEEE Xplore (Online service) |
subjects | Activity recognition adaptive signal processing Detectors Dogs Electric fields electric-field (E-field) instrumentation electrostatic devices event detection Fault detection Human motion Legged locomotion Monitoring Motion perception Moving object recognition Sensor systems sensor systems and applications Sensors Signal processing Voltage |
title | Activity Detection and Recognition With Passive Electric Field Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity%20Detection%20and%20Recognition%20With%20Passive%20Electric%20Field%20Sensors&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Noras,%20Maciej%20A.&rft.date=2022-01&rft.volume=58&rft.issue=1&rft.spage=800&rft.epage=806&rft.pages=800-806&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2021.3131301&rft_dat=%3Cproquest_ieee_%3E2621067047%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621067047&rft_id=info:pmid/&rft_ieee_id=9628024&rfr_iscdi=true |