Loading…

Activity Detection and Recognition With Passive Electric Field Sensors

Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognitio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2022-01, Vol.58 (1), p.800-806
Main Author: Noras, Maciej A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903
cites cdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903
container_end_page 806
container_issue 1
container_start_page 800
container_title IEEE transactions on industry applications
container_volume 58
creator Noras, Maciej A.
description Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization.
doi_str_mv 10.1109/TIA.2021.3131301
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2621067047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628024</ieee_id><sourcerecordid>2621067047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</originalsourceid><addsrcrecordid>eNo9kN9LAkEQx5coyKz3oJeDns929set8yimJQhFGT0u5zpXK3Znu6fgf--aEvMwM_D5zo8vY7fAewAcH2aTQU9wAT0JKTicsQ6gxBxlYc5Zh3OUOSKqS3YV45JzUBpUh40HrvVb3-6yR2op1U2dlfUieyPXfNX-r__07Xf2Wsbot5SNVokK3mVjT6tF9k51bEK8ZhdVuYp0c8pd9jEezYbP-fTlaTIcTHMnENocjTLoSqGriuZOFxIcoK6Mor4rDBiodLoXhVpogWhIEqf0U39utC4cctll98e569D8bii2dtlsQp1WWlEI4IXhyiSKHykXmhgDVXYd_E8Zdha4Pbhlk1v24JY9uZUkd0eJJ6J_HAvR50LJPc22Y94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621067047</pqid></control><display><type>article</type><title>Activity Detection and Recognition With Passive Electric Field Sensors</title><source>IEEE Xplore (Online service)</source><creator>Noras, Maciej A.</creator><creatorcontrib>Noras, Maciej A.</creatorcontrib><description>Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2021.3131301</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; adaptive signal processing ; Detectors ; Dogs ; Electric fields ; electric-field (E-field) instrumentation ; electrostatic devices ; event detection ; Fault detection ; Human motion ; Legged locomotion ; Monitoring ; Motion perception ; Moving object recognition ; Sensor systems ; sensor systems and applications ; Sensors ; Signal processing ; Voltage</subject><ispartof>IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.800-806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</citedby><cites>FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</cites><orcidid>0000-0002-6275-5690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Noras, Maciej A.</creatorcontrib><title>Activity Detection and Recognition With Passive Electric Field Sensors</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization.</description><subject>Activity recognition</subject><subject>adaptive signal processing</subject><subject>Detectors</subject><subject>Dogs</subject><subject>Electric fields</subject><subject>electric-field (E-field) instrumentation</subject><subject>electrostatic devices</subject><subject>event detection</subject><subject>Fault detection</subject><subject>Human motion</subject><subject>Legged locomotion</subject><subject>Monitoring</subject><subject>Motion perception</subject><subject>Moving object recognition</subject><subject>Sensor systems</subject><subject>sensor systems and applications</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Voltage</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LAkEQx5coyKz3oJeDns929set8yimJQhFGT0u5zpXK3Znu6fgf--aEvMwM_D5zo8vY7fAewAcH2aTQU9wAT0JKTicsQ6gxBxlYc5Zh3OUOSKqS3YV45JzUBpUh40HrvVb3-6yR2op1U2dlfUieyPXfNX-r__07Xf2Wsbot5SNVokK3mVjT6tF9k51bEK8ZhdVuYp0c8pd9jEezYbP-fTlaTIcTHMnENocjTLoSqGriuZOFxIcoK6Mor4rDBiodLoXhVpogWhIEqf0U39utC4cctll98e569D8bii2dtlsQp1WWlEI4IXhyiSKHykXmhgDVXYd_E8Zdha4Pbhlk1v24JY9uZUkd0eJJ6J_HAvR50LJPc22Y94</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Noras, Maciej A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6275-5690</orcidid></search><sort><creationdate>202201</creationdate><title>Activity Detection and Recognition With Passive Electric Field Sensors</title><author>Noras, Maciej A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity recognition</topic><topic>adaptive signal processing</topic><topic>Detectors</topic><topic>Dogs</topic><topic>Electric fields</topic><topic>electric-field (E-field) instrumentation</topic><topic>electrostatic devices</topic><topic>event detection</topic><topic>Fault detection</topic><topic>Human motion</topic><topic>Legged locomotion</topic><topic>Monitoring</topic><topic>Motion perception</topic><topic>Moving object recognition</topic><topic>Sensor systems</topic><topic>sensor systems and applications</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noras, Maciej A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noras, Maciej A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity Detection and Recognition With Passive Electric Field Sensors</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-01</date><risdate>2022</risdate><volume>58</volume><issue>1</issue><spage>800</spage><epage>806</epage><pages>800-806</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Use of far-field electric field sensors in an outdoor event detection is described. Electric field variations accompany broad variety of physical events, and field signature signals can be used in determination of activities in proximity of the sensor. Perimeter monitoring, moving objects recognition, electric power faults detection are only a few examples of such applications. This article presents development and signal processing for electric field sensor uses in human and animal motion detection and characterization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2021.3131301</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6275-5690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.800-806
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_2621067047
source IEEE Xplore (Online service)
subjects Activity recognition
adaptive signal processing
Detectors
Dogs
Electric fields
electric-field (E-field) instrumentation
electrostatic devices
event detection
Fault detection
Human motion
Legged locomotion
Monitoring
Motion perception
Moving object recognition
Sensor systems
sensor systems and applications
Sensors
Signal processing
Voltage
title Activity Detection and Recognition With Passive Electric Field Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity%20Detection%20and%20Recognition%20With%20Passive%20Electric%20Field%20Sensors&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Noras,%20Maciej%20A.&rft.date=2022-01&rft.volume=58&rft.issue=1&rft.spage=800&rft.epage=806&rft.pages=800-806&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2021.3131301&rft_dat=%3Cproquest_ieee_%3E2621067047%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-97479ca25ffebc5631c195f74e8c67171f5936924d52997e3e0e0218b7556c903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621067047&rft_id=info:pmid/&rft_ieee_id=9628024&rfr_iscdi=true