Loading…

A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System

This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2022-01, Vol.58 (1), p.1115-1125
Main Authors: Zhao, Shuyan, Dongye, Zhonghao, Wang, Yao, Zan, Xin, Zhang, Hua, Zheng, Sheng, Lu, Xiaonan, Avestruz, Al-Thaddeus, Lu, Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3
cites cdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3
container_end_page 1125
container_issue 1
container_start_page 1115
container_title IEEE transactions on industry applications
container_volume 58
creator Zhao, Shuyan
Dongye, Zhonghao
Wang, Yao
Zan, Xin
Zhang, Hua
Zheng, Sheng
Lu, Xiaonan
Avestruz, Al-Thaddeus
Lu, Fei
description This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s.
doi_str_mv 10.1109/TIA.2021.3084130
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2621067250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9442323</ieee_id><sourcerecordid>2621067250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpdFz6mzH9l0jjV-FQoKreJt2W4mmKpJ3d0i_femVLzMXJ53mPdh7FzASAjA68V0MpIgxUjBWAsFB2wgUGGGyhSHbACAKkNEfcxOYlwBCJ0LPWBvE675x-u1kMAnfN6UfN59NlU2Ty4Rvy152QS_aRK_CeQ-KPDn7ocCVfxmyx2fda7Kpm1Fa-pHm_j0ecHn25jo65Qd1e4z0tnfHrKX-7tF-ZjNnh6m5WSWeWUgZUZCjqBwWRd6bCBfCqOlcihzLaTJFWrl0RQqXxa11x5BVrCkGgqnir6OU0N2ub_bxdTY6JtE_t13bUs-WTE2CAZ76GoPrUP3vaGY7KrbhLb_y0ojBZhC5tBTsKd86GIMVNt1aL5c2FoBdifZ9pLtTrL9k9xHLvaRhoj-cdR9B6nUL36McaM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621067250</pqid></control><display><type>article</type><title>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</title><source>IEEE Xplore (Online service)</source><creator>Zhao, Shuyan ; Dongye, Zhonghao ; Wang, Yao ; Zan, Xin ; Zhang, Hua ; Zheng, Sheng ; Lu, Xiaonan ; Avestruz, Al-Thaddeus ; Lu, Fei</creator><creatorcontrib>Zhao, Shuyan ; Dongye, Zhonghao ; Wang, Yao ; Zan, Xin ; Zhang, Hua ; Zheng, Sheng ; Lu, Xiaonan ; Avestruz, Al-Thaddeus ; Lu, Fei ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2021.3084130</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit breakers ; Conduction losses ; DC circuit breaker ; DC circuit breaker (DCCB) ; ENGINEERING ; inductive power transfer ; inductive power transfer (IPT) ; Load fluctuation ; load-independent ; Logic gates ; Magnetic resonance ; MOSFET ; multiple loads ; Network topology ; Power transfer ; Prototypes ; Receivers ; Relays ; Solid state ; Topology</subject><ispartof>IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.1115-1125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</citedby><cites>FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</cites><orcidid>0000-0002-0539-5887 ; 0000-0002-0954-6443 ; 0000-0003-2599-8674 ; 0000-0001-8961-0734 ; 0000-0002-8424-2570 ; 0000-0002-1896-0275 ; 0000-0001-5961-2608 ; 0000-0002-0920-1939 ; 0000-0003-1797-9764 ; 0000000209546443 ; 0000000189610734 ; 0000000218960275 ; 0000000159612608 ; 0000000317979764 ; 0000000325998674 ; 0000000205395887 ; 0000000209201939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9442323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1869069$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Shuyan</creatorcontrib><creatorcontrib>Dongye, Zhonghao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zan, Xin</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zheng, Sheng</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Avestruz, Al-Thaddeus</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s.</description><subject>Circuit breakers</subject><subject>Conduction losses</subject><subject>DC circuit breaker</subject><subject>DC circuit breaker (DCCB)</subject><subject>ENGINEERING</subject><subject>inductive power transfer</subject><subject>inductive power transfer (IPT)</subject><subject>Load fluctuation</subject><subject>load-independent</subject><subject>Logic gates</subject><subject>Magnetic resonance</subject><subject>MOSFET</subject><subject>multiple loads</subject><subject>Network topology</subject><subject>Power transfer</subject><subject>Prototypes</subject><subject>Receivers</subject><subject>Relays</subject><subject>Solid state</subject><subject>Topology</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpdFz6mzH9l0jjV-FQoKreJt2W4mmKpJ3d0i_femVLzMXJ53mPdh7FzASAjA68V0MpIgxUjBWAsFB2wgUGGGyhSHbACAKkNEfcxOYlwBCJ0LPWBvE675x-u1kMAnfN6UfN59NlU2Ty4Rvy152QS_aRK_CeQ-KPDn7ocCVfxmyx2fda7Kpm1Fa-pHm_j0ecHn25jo65Qd1e4z0tnfHrKX-7tF-ZjNnh6m5WSWeWUgZUZCjqBwWRd6bCBfCqOlcihzLaTJFWrl0RQqXxa11x5BVrCkGgqnir6OU0N2ub_bxdTY6JtE_t13bUs-WTE2CAZ76GoPrUP3vaGY7KrbhLb_y0ojBZhC5tBTsKd86GIMVNt1aL5c2FoBdifZ9pLtTrL9k9xHLvaRhoj-cdR9B6nUL36McaM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhao, Shuyan</creator><creator>Dongye, Zhonghao</creator><creator>Wang, Yao</creator><creator>Zan, Xin</creator><creator>Zhang, Hua</creator><creator>Zheng, Sheng</creator><creator>Lu, Xiaonan</creator><creator>Avestruz, Al-Thaddeus</creator><creator>Lu, Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0002-0954-6443</orcidid><orcidid>https://orcid.org/0000-0003-2599-8674</orcidid><orcidid>https://orcid.org/0000-0001-8961-0734</orcidid><orcidid>https://orcid.org/0000-0002-8424-2570</orcidid><orcidid>https://orcid.org/0000-0002-1896-0275</orcidid><orcidid>https://orcid.org/0000-0001-5961-2608</orcidid><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1797-9764</orcidid><orcidid>https://orcid.org/0000000209546443</orcidid><orcidid>https://orcid.org/0000000189610734</orcidid><orcidid>https://orcid.org/0000000218960275</orcidid><orcidid>https://orcid.org/0000000159612608</orcidid><orcidid>https://orcid.org/0000000317979764</orcidid><orcidid>https://orcid.org/0000000325998674</orcidid><orcidid>https://orcid.org/0000000205395887</orcidid><orcidid>https://orcid.org/0000000209201939</orcidid></search><sort><creationdate>20220101</creationdate><title>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</title><author>Zhao, Shuyan ; Dongye, Zhonghao ; Wang, Yao ; Zan, Xin ; Zhang, Hua ; Zheng, Sheng ; Lu, Xiaonan ; Avestruz, Al-Thaddeus ; Lu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuit breakers</topic><topic>Conduction losses</topic><topic>DC circuit breaker</topic><topic>DC circuit breaker (DCCB)</topic><topic>ENGINEERING</topic><topic>inductive power transfer</topic><topic>inductive power transfer (IPT)</topic><topic>Load fluctuation</topic><topic>load-independent</topic><topic>Logic gates</topic><topic>Magnetic resonance</topic><topic>MOSFET</topic><topic>multiple loads</topic><topic>Network topology</topic><topic>Power transfer</topic><topic>Prototypes</topic><topic>Receivers</topic><topic>Relays</topic><topic>Solid state</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shuyan</creatorcontrib><creatorcontrib>Dongye, Zhonghao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zan, Xin</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zheng, Sheng</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Avestruz, Al-Thaddeus</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shuyan</au><au>Dongye, Zhonghao</au><au>Wang, Yao</au><au>Zan, Xin</au><au>Zhang, Hua</au><au>Zheng, Sheng</au><au>Lu, Xiaonan</au><au>Avestruz, Al-Thaddeus</au><au>Lu, Fei</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>58</volume><issue>1</issue><spage>1115</spage><epage>1125</epage><pages>1115-1125</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2021.3084130</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0002-0954-6443</orcidid><orcidid>https://orcid.org/0000-0003-2599-8674</orcidid><orcidid>https://orcid.org/0000-0001-8961-0734</orcidid><orcidid>https://orcid.org/0000-0002-8424-2570</orcidid><orcidid>https://orcid.org/0000-0002-1896-0275</orcidid><orcidid>https://orcid.org/0000-0001-5961-2608</orcidid><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1797-9764</orcidid><orcidid>https://orcid.org/0000000209546443</orcidid><orcidid>https://orcid.org/0000000189610734</orcidid><orcidid>https://orcid.org/0000000218960275</orcidid><orcidid>https://orcid.org/0000000159612608</orcidid><orcidid>https://orcid.org/0000000317979764</orcidid><orcidid>https://orcid.org/0000000325998674</orcidid><orcidid>https://orcid.org/0000000205395887</orcidid><orcidid>https://orcid.org/0000000209201939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.1115-1125
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_2621067250
source IEEE Xplore (Online service)
subjects Circuit breakers
Conduction losses
DC circuit breaker
DC circuit breaker (DCCB)
ENGINEERING
inductive power transfer
inductive power transfer (IPT)
Load fluctuation
load-independent
Logic gates
Magnetic resonance
MOSFET
multiple loads
Network topology
Power transfer
Prototypes
Receivers
Relays
Solid state
Topology
title A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%204%20kV/120%20A%20SiC%20Solid-State%20DC%20Circuit%20Breaker%20Powered%20By%20a%20Load-Independent%20IPT%20System&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Zhao,%20Shuyan&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-01-01&rft.volume=58&rft.issue=1&rft.spage=1115&rft.epage=1125&rft.pages=1115-1125&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2021.3084130&rft_dat=%3Cproquest_ieee_%3E2621067250%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621067250&rft_id=info:pmid/&rft_ieee_id=9442323&rfr_iscdi=true