Loading…
A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System
This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB....
Saved in:
Published in: | IEEE transactions on industry applications 2022-01, Vol.58 (1), p.1115-1125 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3 |
container_end_page | 1125 |
container_issue | 1 |
container_start_page | 1115 |
container_title | IEEE transactions on industry applications |
container_volume | 58 |
creator | Zhao, Shuyan Dongye, Zhonghao Wang, Yao Zan, Xin Zhang, Hua Zheng, Sheng Lu, Xiaonan Avestruz, Al-Thaddeus Lu, Fei |
description | This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s. |
doi_str_mv | 10.1109/TIA.2021.3084130 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2621067250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9442323</ieee_id><sourcerecordid>2621067250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpdFz6mzH9l0jjV-FQoKreJt2W4mmKpJ3d0i_femVLzMXJ53mPdh7FzASAjA68V0MpIgxUjBWAsFB2wgUGGGyhSHbACAKkNEfcxOYlwBCJ0LPWBvE675x-u1kMAnfN6UfN59NlU2Ty4Rvy152QS_aRK_CeQ-KPDn7ocCVfxmyx2fda7Kpm1Fa-pHm_j0ecHn25jo65Qd1e4z0tnfHrKX-7tF-ZjNnh6m5WSWeWUgZUZCjqBwWRd6bCBfCqOlcihzLaTJFWrl0RQqXxa11x5BVrCkGgqnir6OU0N2ub_bxdTY6JtE_t13bUs-WTE2CAZ76GoPrUP3vaGY7KrbhLb_y0ojBZhC5tBTsKd86GIMVNt1aL5c2FoBdifZ9pLtTrL9k9xHLvaRhoj-cdR9B6nUL36McaM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621067250</pqid></control><display><type>article</type><title>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</title><source>IEEE Xplore (Online service)</source><creator>Zhao, Shuyan ; Dongye, Zhonghao ; Wang, Yao ; Zan, Xin ; Zhang, Hua ; Zheng, Sheng ; Lu, Xiaonan ; Avestruz, Al-Thaddeus ; Lu, Fei</creator><creatorcontrib>Zhao, Shuyan ; Dongye, Zhonghao ; Wang, Yao ; Zan, Xin ; Zhang, Hua ; Zheng, Sheng ; Lu, Xiaonan ; Avestruz, Al-Thaddeus ; Lu, Fei ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2021.3084130</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit breakers ; Conduction losses ; DC circuit breaker ; DC circuit breaker (DCCB) ; ENGINEERING ; inductive power transfer ; inductive power transfer (IPT) ; Load fluctuation ; load-independent ; Logic gates ; Magnetic resonance ; MOSFET ; multiple loads ; Network topology ; Power transfer ; Prototypes ; Receivers ; Relays ; Solid state ; Topology</subject><ispartof>IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.1115-1125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</citedby><cites>FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</cites><orcidid>0000-0002-0539-5887 ; 0000-0002-0954-6443 ; 0000-0003-2599-8674 ; 0000-0001-8961-0734 ; 0000-0002-8424-2570 ; 0000-0002-1896-0275 ; 0000-0001-5961-2608 ; 0000-0002-0920-1939 ; 0000-0003-1797-9764 ; 0000000209546443 ; 0000000189610734 ; 0000000218960275 ; 0000000159612608 ; 0000000317979764 ; 0000000325998674 ; 0000000205395887 ; 0000000209201939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9442323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1869069$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Shuyan</creatorcontrib><creatorcontrib>Dongye, Zhonghao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zan, Xin</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zheng, Sheng</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Avestruz, Al-Thaddeus</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s.</description><subject>Circuit breakers</subject><subject>Conduction losses</subject><subject>DC circuit breaker</subject><subject>DC circuit breaker (DCCB)</subject><subject>ENGINEERING</subject><subject>inductive power transfer</subject><subject>inductive power transfer (IPT)</subject><subject>Load fluctuation</subject><subject>load-independent</subject><subject>Logic gates</subject><subject>Magnetic resonance</subject><subject>MOSFET</subject><subject>multiple loads</subject><subject>Network topology</subject><subject>Power transfer</subject><subject>Prototypes</subject><subject>Receivers</subject><subject>Relays</subject><subject>Solid state</subject><subject>Topology</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpdFz6mzH9l0jjV-FQoKreJt2W4mmKpJ3d0i_femVLzMXJ53mPdh7FzASAjA68V0MpIgxUjBWAsFB2wgUGGGyhSHbACAKkNEfcxOYlwBCJ0LPWBvE675x-u1kMAnfN6UfN59NlU2Ty4Rvy152QS_aRK_CeQ-KPDn7ocCVfxmyx2fda7Kpm1Fa-pHm_j0ecHn25jo65Qd1e4z0tnfHrKX-7tF-ZjNnh6m5WSWeWUgZUZCjqBwWRd6bCBfCqOlcihzLaTJFWrl0RQqXxa11x5BVrCkGgqnir6OU0N2ub_bxdTY6JtE_t13bUs-WTE2CAZ76GoPrUP3vaGY7KrbhLb_y0ojBZhC5tBTsKd86GIMVNt1aL5c2FoBdifZ9pLtTrL9k9xHLvaRhoj-cdR9B6nUL36McaM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhao, Shuyan</creator><creator>Dongye, Zhonghao</creator><creator>Wang, Yao</creator><creator>Zan, Xin</creator><creator>Zhang, Hua</creator><creator>Zheng, Sheng</creator><creator>Lu, Xiaonan</creator><creator>Avestruz, Al-Thaddeus</creator><creator>Lu, Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0002-0954-6443</orcidid><orcidid>https://orcid.org/0000-0003-2599-8674</orcidid><orcidid>https://orcid.org/0000-0001-8961-0734</orcidid><orcidid>https://orcid.org/0000-0002-8424-2570</orcidid><orcidid>https://orcid.org/0000-0002-1896-0275</orcidid><orcidid>https://orcid.org/0000-0001-5961-2608</orcidid><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1797-9764</orcidid><orcidid>https://orcid.org/0000000209546443</orcidid><orcidid>https://orcid.org/0000000189610734</orcidid><orcidid>https://orcid.org/0000000218960275</orcidid><orcidid>https://orcid.org/0000000159612608</orcidid><orcidid>https://orcid.org/0000000317979764</orcidid><orcidid>https://orcid.org/0000000325998674</orcidid><orcidid>https://orcid.org/0000000205395887</orcidid><orcidid>https://orcid.org/0000000209201939</orcidid></search><sort><creationdate>20220101</creationdate><title>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</title><author>Zhao, Shuyan ; Dongye, Zhonghao ; Wang, Yao ; Zan, Xin ; Zhang, Hua ; Zheng, Sheng ; Lu, Xiaonan ; Avestruz, Al-Thaddeus ; Lu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuit breakers</topic><topic>Conduction losses</topic><topic>DC circuit breaker</topic><topic>DC circuit breaker (DCCB)</topic><topic>ENGINEERING</topic><topic>inductive power transfer</topic><topic>inductive power transfer (IPT)</topic><topic>Load fluctuation</topic><topic>load-independent</topic><topic>Logic gates</topic><topic>Magnetic resonance</topic><topic>MOSFET</topic><topic>multiple loads</topic><topic>Network topology</topic><topic>Power transfer</topic><topic>Prototypes</topic><topic>Receivers</topic><topic>Relays</topic><topic>Solid state</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shuyan</creatorcontrib><creatorcontrib>Dongye, Zhonghao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zan, Xin</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zheng, Sheng</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Avestruz, Al-Thaddeus</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shuyan</au><au>Dongye, Zhonghao</au><au>Wang, Yao</au><au>Zan, Xin</au><au>Zhang, Hua</au><au>Zheng, Sheng</au><au>Lu, Xiaonan</au><au>Avestruz, Al-Thaddeus</au><au>Lu, Fei</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>58</volume><issue>1</issue><spage>1115</spage><epage>1125</epage><pages>1115-1125</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This article introduces a 4 kV/120 A solid-state dc circuit breaker (DCCB) based on discrete SiC mosfet s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC mosfet s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4%. The IPT system is tested to power a 4 kV/120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 μ s.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2021.3084130</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0002-0954-6443</orcidid><orcidid>https://orcid.org/0000-0003-2599-8674</orcidid><orcidid>https://orcid.org/0000-0001-8961-0734</orcidid><orcidid>https://orcid.org/0000-0002-8424-2570</orcidid><orcidid>https://orcid.org/0000-0002-1896-0275</orcidid><orcidid>https://orcid.org/0000-0001-5961-2608</orcidid><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1797-9764</orcidid><orcidid>https://orcid.org/0000000209546443</orcidid><orcidid>https://orcid.org/0000000189610734</orcidid><orcidid>https://orcid.org/0000000218960275</orcidid><orcidid>https://orcid.org/0000000159612608</orcidid><orcidid>https://orcid.org/0000000317979764</orcidid><orcidid>https://orcid.org/0000000325998674</orcidid><orcidid>https://orcid.org/0000000205395887</orcidid><orcidid>https://orcid.org/0000000209201939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2022-01, Vol.58 (1), p.1115-1125 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_2621067250 |
source | IEEE Xplore (Online service) |
subjects | Circuit breakers Conduction losses DC circuit breaker DC circuit breaker (DCCB) ENGINEERING inductive power transfer inductive power transfer (IPT) Load fluctuation load-independent Logic gates Magnetic resonance MOSFET multiple loads Network topology Power transfer Prototypes Receivers Relays Solid state Topology |
title | A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%204%20kV/120%20A%20SiC%20Solid-State%20DC%20Circuit%20Breaker%20Powered%20By%20a%20Load-Independent%20IPT%20System&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Zhao,%20Shuyan&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-01-01&rft.volume=58&rft.issue=1&rft.spage=1115&rft.epage=1125&rft.pages=1115-1125&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2021.3084130&rft_dat=%3Cproquest_ieee_%3E2621067250%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-62059039bf748605b16423a925412653943c96735b7fc4c902d0bef07a37999a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621067250&rft_id=info:pmid/&rft_ieee_id=9442323&rfr_iscdi=true |