Loading…

Reducing the Depth of Linear Reversible Quantum Circuits

In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many appl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-01
Main Authors: Timothée Goubault de Brugière, Baboulin, Marc, Valiron, Benoît, Martiel, Simon, Allouche, Cyril
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Timothée Goubault de Brugière
Baboulin, Marc
Valiron, Benoît
Martiel, Simon
Allouche, Cyril
description In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
doi_str_mv 10.48550/arxiv.2201.06380
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2621113035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621113035</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-b4f3814dad43445f41006721790e41b6c14ed412d9bfbf4bb8c71209bf00ea3b3</originalsourceid><addsrcrecordid>eNotjctqwzAQAEWh0JDmA3oT9Gx3Vw9bORb3CYbSkHuQ7FWjkNqpZIV-fg3NaZjLDGN3CKUyWsODjb_hXAoBWEIlDVyxhZASC6OEuGGrlA4AIKpaaC0XzGyoz10Yvvi0J_5Ep2nPR8_bMJCNfENniim4I_HPbIcpf_MmxC6HKd2ya2-PiVYXLtn25XnbvBXtx-t789gWVgtdOOWlQdXbXkmltFcIMK-xXgMpdFWHinqFol8777xyznQ1CpgNgKx0csnu_7OnOP5kStPuMOY4zMedqAQiSpBa_gFFHkcR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621113035</pqid></control><display><type>article</type><title>Reducing the Depth of Linear Reversible Quantum Circuits</title><source>Publicly Available Content Database</source><creator>Timothée Goubault de Brugière ; Baboulin, Marc ; Valiron, Benoît ; Martiel, Simon ; Allouche, Cyril</creator><creatorcontrib>Timothée Goubault de Brugière ; Baboulin, Marc ; Valiron, Benoît ; Martiel, Simon ; Allouche, Cyril</creatorcontrib><description>In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2201.06380</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Circuits ; Greedy algorithms ; Optimization ; Quantum computing ; Qubits (quantum computing) ; Upper bounds</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2621113035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Timothée Goubault de Brugière</creatorcontrib><creatorcontrib>Baboulin, Marc</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><creatorcontrib>Martiel, Simon</creatorcontrib><creatorcontrib>Allouche, Cyril</creatorcontrib><title>Reducing the Depth of Linear Reversible Quantum Circuits</title><title>arXiv.org</title><description>In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Greedy algorithms</subject><subject>Optimization</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAQAEWh0JDmA3oT9Gx3Vw9bORb3CYbSkHuQ7FWjkNqpZIV-fg3NaZjLDGN3CKUyWsODjb_hXAoBWEIlDVyxhZASC6OEuGGrlA4AIKpaaC0XzGyoz10Yvvi0J_5Ep2nPR8_bMJCNfENniim4I_HPbIcpf_MmxC6HKd2ya2-PiVYXLtn25XnbvBXtx-t789gWVgtdOOWlQdXbXkmltFcIMK-xXgMpdFWHinqFol8777xyznQ1CpgNgKx0csnu_7OnOP5kStPuMOY4zMedqAQiSpBa_gFFHkcR</recordid><startdate>20220117</startdate><enddate>20220117</enddate><creator>Timothée Goubault de Brugière</creator><creator>Baboulin, Marc</creator><creator>Valiron, Benoît</creator><creator>Martiel, Simon</creator><creator>Allouche, Cyril</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220117</creationdate><title>Reducing the Depth of Linear Reversible Quantum Circuits</title><author>Timothée Goubault de Brugière ; Baboulin, Marc ; Valiron, Benoît ; Martiel, Simon ; Allouche, Cyril</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-b4f3814dad43445f41006721790e41b6c14ed412d9bfbf4bb8c71209bf00ea3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Greedy algorithms</topic><topic>Optimization</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Timothée Goubault de Brugière</creatorcontrib><creatorcontrib>Baboulin, Marc</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><creatorcontrib>Martiel, Simon</creatorcontrib><creatorcontrib>Allouche, Cyril</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timothée Goubault de Brugière</au><au>Baboulin, Marc</au><au>Valiron, Benoît</au><au>Martiel, Simon</au><au>Allouche, Cyril</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Depth of Linear Reversible Quantum Circuits</atitle><jtitle>arXiv.org</jtitle><date>2022-01-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2201.06380</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2621113035
source Publicly Available Content Database
subjects Algorithms
Circuits
Greedy algorithms
Optimization
Quantum computing
Qubits (quantum computing)
Upper bounds
title Reducing the Depth of Linear Reversible Quantum Circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Depth%20of%20Linear%20Reversible%20Quantum%20Circuits&rft.jtitle=arXiv.org&rft.au=Timoth%C3%A9e%20Goubault%20de%20Brugi%C3%A8re&rft.date=2022-01-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2201.06380&rft_dat=%3Cproquest%3E2621113035%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-b4f3814dad43445f41006721790e41b6c14ed412d9bfbf4bb8c71209bf00ea3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621113035&rft_id=info:pmid/&rfr_iscdi=true