Loading…
Reducing the Depth of Linear Reversible Quantum Circuits
In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many appl...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Timothée Goubault de Brugière Baboulin, Marc Valiron, Benoît Martiel, Simon Allouche, Cyril |
description | In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available. |
doi_str_mv | 10.48550/arxiv.2201.06380 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2621113035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621113035</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-b4f3814dad43445f41006721790e41b6c14ed412d9bfbf4bb8c71209bf00ea3b3</originalsourceid><addsrcrecordid>eNotjctqwzAQAEWh0JDmA3oT9Gx3Vw9bORb3CYbSkHuQ7FWjkNqpZIV-fg3NaZjLDGN3CKUyWsODjb_hXAoBWEIlDVyxhZASC6OEuGGrlA4AIKpaaC0XzGyoz10Yvvi0J_5Ep2nPR8_bMJCNfENniim4I_HPbIcpf_MmxC6HKd2ya2-PiVYXLtn25XnbvBXtx-t789gWVgtdOOWlQdXbXkmltFcIMK-xXgMpdFWHinqFol8777xyznQ1CpgNgKx0csnu_7OnOP5kStPuMOY4zMedqAQiSpBa_gFFHkcR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621113035</pqid></control><display><type>article</type><title>Reducing the Depth of Linear Reversible Quantum Circuits</title><source>Publicly Available Content Database</source><creator>Timothée Goubault de Brugière ; Baboulin, Marc ; Valiron, Benoît ; Martiel, Simon ; Allouche, Cyril</creator><creatorcontrib>Timothée Goubault de Brugière ; Baboulin, Marc ; Valiron, Benoît ; Martiel, Simon ; Allouche, Cyril</creatorcontrib><description>In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2201.06380</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Circuits ; Greedy algorithms ; Optimization ; Quantum computing ; Qubits (quantum computing) ; Upper bounds</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2621113035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Timothée Goubault de Brugière</creatorcontrib><creatorcontrib>Baboulin, Marc</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><creatorcontrib>Martiel, Simon</creatorcontrib><creatorcontrib>Allouche, Cyril</creatorcontrib><title>Reducing the Depth of Linear Reversible Quantum Circuits</title><title>arXiv.org</title><description>In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Greedy algorithms</subject><subject>Optimization</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAQAEWh0JDmA3oT9Gx3Vw9bORb3CYbSkHuQ7FWjkNqpZIV-fg3NaZjLDGN3CKUyWsODjb_hXAoBWEIlDVyxhZASC6OEuGGrlA4AIKpaaC0XzGyoz10Yvvi0J_5Ep2nPR8_bMJCNfENniim4I_HPbIcpf_MmxC6HKd2ya2-PiVYXLtn25XnbvBXtx-t789gWVgtdOOWlQdXbXkmltFcIMK-xXgMpdFWHinqFol8777xyznQ1CpgNgKx0csnu_7OnOP5kStPuMOY4zMedqAQiSpBa_gFFHkcR</recordid><startdate>20220117</startdate><enddate>20220117</enddate><creator>Timothée Goubault de Brugière</creator><creator>Baboulin, Marc</creator><creator>Valiron, Benoît</creator><creator>Martiel, Simon</creator><creator>Allouche, Cyril</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220117</creationdate><title>Reducing the Depth of Linear Reversible Quantum Circuits</title><author>Timothée Goubault de Brugière ; Baboulin, Marc ; Valiron, Benoît ; Martiel, Simon ; Allouche, Cyril</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-b4f3814dad43445f41006721790e41b6c14ed412d9bfbf4bb8c71209bf00ea3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Greedy algorithms</topic><topic>Optimization</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Timothée Goubault de Brugière</creatorcontrib><creatorcontrib>Baboulin, Marc</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><creatorcontrib>Martiel, Simon</creatorcontrib><creatorcontrib>Allouche, Cyril</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timothée Goubault de Brugière</au><au>Baboulin, Marc</au><au>Valiron, Benoît</au><au>Martiel, Simon</au><au>Allouche, Cyril</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Depth of Linear Reversible Quantum Circuits</atitle><jtitle>arXiv.org</jtitle><date>2022-01-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2201.06380</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2621113035 |
source | Publicly Available Content Database |
subjects | Algorithms Circuits Greedy algorithms Optimization Quantum computing Qubits (quantum computing) Upper bounds |
title | Reducing the Depth of Linear Reversible Quantum Circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Depth%20of%20Linear%20Reversible%20Quantum%20Circuits&rft.jtitle=arXiv.org&rft.au=Timoth%C3%A9e%20Goubault%20de%20Brugi%C3%A8re&rft.date=2022-01-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2201.06380&rft_dat=%3Cproquest%3E2621113035%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-b4f3814dad43445f41006721790e41b6c14ed412d9bfbf4bb8c71209bf00ea3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621113035&rft_id=info:pmid/&rfr_iscdi=true |