Loading…

Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems

We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2022-02, Vol.123 (4), p.901-923
Main Authors: Barceló‐Mercader, Jordi, Codony, David, Fernández‐Méndez, Sonia, Arias, Irene
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3
cites cdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3
container_end_page 923
container_issue 4
container_start_page 901
container_title International journal for numerical methods in engineering
container_volume 123
creator Barceló‐Mercader, Jordi
Codony, David
Fernández‐Méndez, Sonia
Arias, Irene
description We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect.
doi_str_mv 10.1002/nme.6882
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621139396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621139396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJman85PllJqFapuFJchk9y0qTNJzUyRuvIRfEafxNS6dXUvnI9z4EPonJIRJYRd-RZGRVWxAzSgRJQZYaQ8RIMUiSwXFT1GJ123IoTSnPABCi-gXjF4G6KGFnyPg8XO9xCt0oB18L3zG9dvsfIGL8BDVI37AIPXEF0wTu8y5_HSLZbfn18hGogYGtB9DC3opfJOqwavY6gbaLtTdGRV08HZ3x2i55vp0-Q2mz_O7ibX80xzVrLMWm2ZoWML6asNpZoYZipaEVC5KYuyFDkRoq4Ft7kVNh-TghtRG5ELELXlQ3Sx703DbxvoerkKm-jTpGQFo5QLLopEXe4pHUPXRbByHV2r4lZSInc6ZdIpdzoTmu3Rd9fA9l9OPtxPf_kf8dh6ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621139396</pqid></control><display><type>article</type><title>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Barceló‐Mercader, Jordi ; Codony, David ; Fernández‐Méndez, Sonia ; Arias, Irene</creator><creatorcontrib>Barceló‐Mercader, Jordi ; Codony, David ; Fernández‐Méndez, Sonia ; Arias, Irene</creatorcontrib><description>We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6882</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Boundary value problems ; Electric fields ; flexoelectricity ; high‐order PDEs ; immersed boundary ; material interfaces ; Mathematical analysis ; Mathematical models ; Metamaterials ; Nitsche's method ; Periodic structures ; periodicity ; unfitted discretization ; Unit cell</subject><ispartof>International journal for numerical methods in engineering, 2022-02, Vol.123 (4), p.901-923</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</citedby><cites>FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</cites><orcidid>0000-0002-7341-9799 ; 0000-0002-9305-7684 ; 0000-0002-3702-6058 ; 0000-0002-6761-3499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barceló‐Mercader, Jordi</creatorcontrib><creatorcontrib>Codony, David</creatorcontrib><creatorcontrib>Fernández‐Méndez, Sonia</creatorcontrib><creatorcontrib>Arias, Irene</creatorcontrib><title>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</title><title>International journal for numerical methods in engineering</title><description>We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect.</description><subject>Boundary value problems</subject><subject>Electric fields</subject><subject>flexoelectricity</subject><subject>high‐order PDEs</subject><subject>immersed boundary</subject><subject>material interfaces</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metamaterials</subject><subject>Nitsche's method</subject><subject>Periodic structures</subject><subject>periodicity</subject><subject>unfitted discretization</subject><subject>Unit cell</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJman85PllJqFapuFJchk9y0qTNJzUyRuvIRfEafxNS6dXUvnI9z4EPonJIRJYRd-RZGRVWxAzSgRJQZYaQ8RIMUiSwXFT1GJ123IoTSnPABCi-gXjF4G6KGFnyPg8XO9xCt0oB18L3zG9dvsfIGL8BDVI37AIPXEF0wTu8y5_HSLZbfn18hGogYGtB9DC3opfJOqwavY6gbaLtTdGRV08HZ3x2i55vp0-Q2mz_O7ibX80xzVrLMWm2ZoWML6asNpZoYZipaEVC5KYuyFDkRoq4Ft7kVNh-TghtRG5ELELXlQ3Sx703DbxvoerkKm-jTpGQFo5QLLopEXe4pHUPXRbByHV2r4lZSInc6ZdIpdzoTmu3Rd9fA9l9OPtxPf_kf8dh6ZQ</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Barceló‐Mercader, Jordi</creator><creator>Codony, David</creator><creator>Fernández‐Méndez, Sonia</creator><creator>Arias, Irene</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7341-9799</orcidid><orcidid>https://orcid.org/0000-0002-9305-7684</orcidid><orcidid>https://orcid.org/0000-0002-3702-6058</orcidid><orcidid>https://orcid.org/0000-0002-6761-3499</orcidid></search><sort><creationdate>20220228</creationdate><title>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</title><author>Barceló‐Mercader, Jordi ; Codony, David ; Fernández‐Méndez, Sonia ; Arias, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary value problems</topic><topic>Electric fields</topic><topic>flexoelectricity</topic><topic>high‐order PDEs</topic><topic>immersed boundary</topic><topic>material interfaces</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metamaterials</topic><topic>Nitsche's method</topic><topic>Periodic structures</topic><topic>periodicity</topic><topic>unfitted discretization</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barceló‐Mercader, Jordi</creatorcontrib><creatorcontrib>Codony, David</creatorcontrib><creatorcontrib>Fernández‐Méndez, Sonia</creatorcontrib><creatorcontrib>Arias, Irene</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barceló‐Mercader, Jordi</au><au>Codony, David</au><au>Fernández‐Méndez, Sonia</au><au>Arias, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>123</volume><issue>4</issue><spage>901</spage><epage>923</epage><pages>901-923</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6882</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7341-9799</orcidid><orcidid>https://orcid.org/0000-0002-9305-7684</orcidid><orcidid>https://orcid.org/0000-0002-3702-6058</orcidid><orcidid>https://orcid.org/0000-0002-6761-3499</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2022-02, Vol.123 (4), p.901-923
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2621139396
source Wiley-Blackwell Read & Publish Collection
subjects Boundary value problems
Electric fields
flexoelectricity
high‐order PDEs
immersed boundary
material interfaces
Mathematical analysis
Mathematical models
Metamaterials
Nitsche's method
Periodic structures
periodicity
unfitted discretization
Unit cell
title Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20enforcement%20of%20interface%20continuity%20and%20generalized%20periodicity%20in%20high%E2%80%90order%20electromechanical%20problems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Barcel%C3%B3%E2%80%90Mercader,%20Jordi&rft.date=2022-02-28&rft.volume=123&rft.issue=4&rft.spage=901&rft.epage=923&rft.pages=901-923&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6882&rft_dat=%3Cproquest_cross%3E2621139396%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621139396&rft_id=info:pmid/&rfr_iscdi=true