Loading…
Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems
We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit...
Saved in:
Published in: | International journal for numerical methods in engineering 2022-02, Vol.123 (4), p.901-923 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3 |
container_end_page | 923 |
container_issue | 4 |
container_start_page | 901 |
container_title | International journal for numerical methods in engineering |
container_volume | 123 |
creator | Barceló‐Mercader, Jordi Codony, David Fernández‐Méndez, Sonia Arias, Irene |
description | We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect. |
doi_str_mv | 10.1002/nme.6882 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621139396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621139396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJman85PllJqFapuFJchk9y0qTNJzUyRuvIRfEafxNS6dXUvnI9z4EPonJIRJYRd-RZGRVWxAzSgRJQZYaQ8RIMUiSwXFT1GJ123IoTSnPABCi-gXjF4G6KGFnyPg8XO9xCt0oB18L3zG9dvsfIGL8BDVI37AIPXEF0wTu8y5_HSLZbfn18hGogYGtB9DC3opfJOqwavY6gbaLtTdGRV08HZ3x2i55vp0-Q2mz_O7ibX80xzVrLMWm2ZoWML6asNpZoYZipaEVC5KYuyFDkRoq4Ft7kVNh-TghtRG5ELELXlQ3Sx703DbxvoerkKm-jTpGQFo5QLLopEXe4pHUPXRbByHV2r4lZSInc6ZdIpdzoTmu3Rd9fA9l9OPtxPf_kf8dh6ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621139396</pqid></control><display><type>article</type><title>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Barceló‐Mercader, Jordi ; Codony, David ; Fernández‐Méndez, Sonia ; Arias, Irene</creator><creatorcontrib>Barceló‐Mercader, Jordi ; Codony, David ; Fernández‐Méndez, Sonia ; Arias, Irene</creatorcontrib><description>We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6882</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Boundary value problems ; Electric fields ; flexoelectricity ; high‐order PDEs ; immersed boundary ; material interfaces ; Mathematical analysis ; Mathematical models ; Metamaterials ; Nitsche's method ; Periodic structures ; periodicity ; unfitted discretization ; Unit cell</subject><ispartof>International journal for numerical methods in engineering, 2022-02, Vol.123 (4), p.901-923</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</citedby><cites>FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</cites><orcidid>0000-0002-7341-9799 ; 0000-0002-9305-7684 ; 0000-0002-3702-6058 ; 0000-0002-6761-3499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barceló‐Mercader, Jordi</creatorcontrib><creatorcontrib>Codony, David</creatorcontrib><creatorcontrib>Fernández‐Méndez, Sonia</creatorcontrib><creatorcontrib>Arias, Irene</creatorcontrib><title>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</title><title>International journal for numerical methods in engineering</title><description>We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect.</description><subject>Boundary value problems</subject><subject>Electric fields</subject><subject>flexoelectricity</subject><subject>high‐order PDEs</subject><subject>immersed boundary</subject><subject>material interfaces</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metamaterials</subject><subject>Nitsche's method</subject><subject>Periodic structures</subject><subject>periodicity</subject><subject>unfitted discretization</subject><subject>Unit cell</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJman85PllJqFapuFJchk9y0qTNJzUyRuvIRfEafxNS6dXUvnI9z4EPonJIRJYRd-RZGRVWxAzSgRJQZYaQ8RIMUiSwXFT1GJ123IoTSnPABCi-gXjF4G6KGFnyPg8XO9xCt0oB18L3zG9dvsfIGL8BDVI37AIPXEF0wTu8y5_HSLZbfn18hGogYGtB9DC3opfJOqwavY6gbaLtTdGRV08HZ3x2i55vp0-Q2mz_O7ibX80xzVrLMWm2ZoWML6asNpZoYZipaEVC5KYuyFDkRoq4Ft7kVNh-TghtRG5ELELXlQ3Sx703DbxvoerkKm-jTpGQFo5QLLopEXe4pHUPXRbByHV2r4lZSInc6ZdIpdzoTmu3Rd9fA9l9OPtxPf_kf8dh6ZQ</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Barceló‐Mercader, Jordi</creator><creator>Codony, David</creator><creator>Fernández‐Méndez, Sonia</creator><creator>Arias, Irene</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7341-9799</orcidid><orcidid>https://orcid.org/0000-0002-9305-7684</orcidid><orcidid>https://orcid.org/0000-0002-3702-6058</orcidid><orcidid>https://orcid.org/0000-0002-6761-3499</orcidid></search><sort><creationdate>20220228</creationdate><title>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</title><author>Barceló‐Mercader, Jordi ; Codony, David ; Fernández‐Méndez, Sonia ; Arias, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary value problems</topic><topic>Electric fields</topic><topic>flexoelectricity</topic><topic>high‐order PDEs</topic><topic>immersed boundary</topic><topic>material interfaces</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metamaterials</topic><topic>Nitsche's method</topic><topic>Periodic structures</topic><topic>periodicity</topic><topic>unfitted discretization</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barceló‐Mercader, Jordi</creatorcontrib><creatorcontrib>Codony, David</creatorcontrib><creatorcontrib>Fernández‐Méndez, Sonia</creatorcontrib><creatorcontrib>Arias, Irene</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barceló‐Mercader, Jordi</au><au>Codony, David</au><au>Fernández‐Méndez, Sonia</au><au>Arias, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>123</volume><issue>4</issue><spage>901</spage><epage>923</epage><pages>901-923</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>We present a formulation for the weak enforcement of continuity conditions at material interfaces in high‐order problems by means of Nitsche's method, which is particularly suited for unfitted discretizations. This formulation is extended to impose generalized periodicity conditions at the unit cell boundaries of periodic structures. The formulation is derived for flexoelectricity, a high‐order electromechanical coupling between strain gradient and electric field, mathematically modeled as a coupled system of fourth‐order PDEs. The design of flexoelectric devices requires the solution of high‐order boundary value problems on complex material architectures, including general multimaterial arrangements. This can be efficiently achieved with an immersed boundary B‐splines approach. Furthermore, the design of flexoelectric metamaterials also involves the analysis of periodic unit cells with generalized periodicity conditions. Optimal high‐order convergence rates are obtained with an unfitted B‐spline approximation, confirming the reliability of the method. The numerical simulations illustrate the usefulness of the proposed approach toward the design of functional electromechanical multimaterial devices and metamaterials harnessing the flexoelectric effect.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6882</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7341-9799</orcidid><orcidid>https://orcid.org/0000-0002-9305-7684</orcidid><orcidid>https://orcid.org/0000-0002-3702-6058</orcidid><orcidid>https://orcid.org/0000-0002-6761-3499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2022-02, Vol.123 (4), p.901-923 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2621139396 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Boundary value problems Electric fields flexoelectricity high‐order PDEs immersed boundary material interfaces Mathematical analysis Mathematical models Metamaterials Nitsche's method Periodic structures periodicity unfitted discretization Unit cell |
title | Weak enforcement of interface continuity and generalized periodicity in high‐order electromechanical problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20enforcement%20of%20interface%20continuity%20and%20generalized%20periodicity%20in%20high%E2%80%90order%20electromechanical%20problems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Barcel%C3%B3%E2%80%90Mercader,%20Jordi&rft.date=2022-02-28&rft.volume=123&rft.issue=4&rft.spage=901&rft.epage=923&rft.pages=901-923&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6882&rft_dat=%3Cproquest_cross%3E2621139396%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3272-ffcf2d14feffcbd11c0d2d8180ea5d767795099bb93f5f9f54063d9bd959e9bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621139396&rft_id=info:pmid/&rfr_iscdi=true |