Loading…
Potassium reduced graphite functionalization: Architectural aesthetics and electrical excellence
Rational functionalization plays an important role to push forward graphene applications in multifarious cutting-edge technologies. A key topic that how to program the regular distribution of functional groups, however, remains a big challenge. Herein, we developed a very simple, high-throughput gra...
Saved in:
Published in: | Carbon (New York) 2022-01, Vol.186, p.75-82 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rational functionalization plays an important role to push forward graphene applications in multifarious cutting-edge technologies. A key topic that how to program the regular distribution of functional groups, however, remains a big challenge. Herein, we developed a very simple, high-throughput graphite reduction methodology to attain the negatively-charged graphene which carried ultrahigh-density and evenly-distributed negative charges. Guided by these negative charges, electrophiles were regularly attached to graphene sheets. On the other hand, potassium reduction will not break the carbon-carbon σ-bonds, hence graphene hexagonal lattice was kept as perfect as the pristine pattern. Structural advantages of the negatively-charged graphene derivatives allowed a far more excellent conductivity and electron mobility than the counterparts derived from the prevalent graphene oxide precursor.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2021.10.019 |