Loading…

Biochar Phosphate Fertilizer Loaded with Urea Preserves Available Nitrogen Longer than Conventional Urea

Biochar, a carbon-rich material obtained by pyrolysis of organic wastes, is an attractive matrix for loading nutrients and producing enhanced efficiency fertilizers. In this study, poultry litter (PL) was enriched with phosphoric acid (H3PO4) and MgO to produce a biochar-based fertilizer (PLB), whic...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-01, Vol.14 (2), p.686
Main Authors: Barbosa, Cristiane Francisca, Correa, Dehon Aparecido, Carneiro, Jefferson Santana da Silva, Melo, Leônidas Carrijo Azevedo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biochar, a carbon-rich material obtained by pyrolysis of organic wastes, is an attractive matrix for loading nutrients and producing enhanced efficiency fertilizers. In this study, poultry litter (PL) was enriched with phosphoric acid (H3PO4) and MgO to produce a biochar-based fertilizer (PLB), which was loaded with urea in a 4:5 ratio (PLB:urea, w/w) to generate a 15–15% N–P slow-release fertilizer (PLB–N) to be used in a single application to soil. A greenhouse experiment was carried out in which a common bean was cultivated followed by maize to evaluate the agronomic efficiency and the residual effect of fertilization with PLB–N in Ultisol. Six treatments were tested, including four doses of N (100, 150, 200, and 250 mg kg−1) via PLB–N in a single application, a control with triple superphosphate (TSP—applied once) and urea (split three times), and a control without N-P fertilization. The greatest effect of PLB–N was the residual effect of fertilization, in which maize showed a linear response to the N doses applied via PLB–N but showed no response to conventional TSP + urea fertilization. Biochar has the potential as a loading matrix to preserve N availability and increase residual effects and N-use efficiency by plants.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14020686