Loading…

A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget

We present an energy transition pathway constrained by a total CO2 budget of 7 Gt allocated to the German energy system after 2020, the Budget Scenario (BS). We apply a normative backcasting approach for scenario building based on historical data and assumptions from existing scenario studies. The m...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-01, Vol.14 (2), p.1025, Article 1025
Main Authors: Simon, Sonja, Xiao, Mengzhu, Harpprecht, Carina, Sasanpour, Shima, Gardian, Hedda, Pregger, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2105-d87a87903e6e3c6a0dc956d9b435cab9e0760e37e397ded62601f688ad71a94c3
cites cdi_FETCH-LOGICAL-c2105-d87a87903e6e3c6a0dc956d9b435cab9e0760e37e397ded62601f688ad71a94c3
container_end_page
container_issue 2
container_start_page 1025
container_title Sustainability
container_volume 14
creator Simon, Sonja
Xiao, Mengzhu
Harpprecht, Carina
Sasanpour, Shima
Gardian, Hedda
Pregger, Thomas
description We present an energy transition pathway constrained by a total CO2 budget of 7 Gt allocated to the German energy system after 2020, the Budget Scenario (BS). We apply a normative backcasting approach for scenario building based on historical data and assumptions from existing scenario studies. The modeling approach combines a comprehensive energy system model (ESM) with REMix—a cost optimization model for power and heat that explicitly incorporates sector coupling. To achieve the necessary CO2 reduction, the scenario focuses on electrifying all end use sectors until 2030, adding 1.5–2 million electric vehicles to the road per year. In buildings, 400,000–500,000 heat pumps would be installed annually by 2030, and the share of district heating would double until 2050. In the scenario, coal needs to be phased out by 2030. Wind and Photovoltaic (PV) capacities would need to more than double to 290 GW by 2030 and reach 500 GW by 2050. The BS results indicate that a significant acceleration of the energy transition is necessary before 2030 and that this higher pace must be maintained thereafter until 2050.
doi_str_mv 10.3390/su14021025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621386355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621386355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2105-d87a87903e6e3c6a0dc956d9b435cab9e0760e37e397ded62601f688ad71a94c3</originalsourceid><addsrcrecordid>eNptkMFKAzEQhoMoWLQXnyDgTdg62TTJ5liXWoWignpestnZdku7qUmW0rfyGXwyVyoo4lxmYL6Zf-Yn5ILBiHMN16FjY0gZpOKIDFJQLGEg4PhXfUqGIaygD86ZZnJAHib0ycTlzuxp7TyNS6Qz9BvT0mmLfrGnz2hj38jdZmtiU66R7pq4pIaykaAf7znNjS9dS2-6aoHxnJzUZh1w-J3PyOvt9CW_S-aPs_t8Mk9sf59IqkyZTGngKJFbaaCyWshKl2MurCk1gpKAXCHXqsJKphJYLbPMVIoZPbb8jFwe9m69e-swxGLlOt_2kkUqU8YzyYXoqasDZb0LwWNdbH2zMX5fMCi-LCt-LOth-APbJvYvuzZ606z_G_kEJnZrsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621386355</pqid></control><display><type>article</type><title>A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget</title><source>Publicly Available Content (ProQuest)</source><creator>Simon, Sonja ; Xiao, Mengzhu ; Harpprecht, Carina ; Sasanpour, Shima ; Gardian, Hedda ; Pregger, Thomas</creator><creatorcontrib>Simon, Sonja ; Xiao, Mengzhu ; Harpprecht, Carina ; Sasanpour, Shima ; Gardian, Hedda ; Pregger, Thomas</creatorcontrib><description>We present an energy transition pathway constrained by a total CO2 budget of 7 Gt allocated to the German energy system after 2020, the Budget Scenario (BS). We apply a normative backcasting approach for scenario building based on historical data and assumptions from existing scenario studies. The modeling approach combines a comprehensive energy system model (ESM) with REMix—a cost optimization model for power and heat that explicitly incorporates sector coupling. To achieve the necessary CO2 reduction, the scenario focuses on electrifying all end use sectors until 2030, adding 1.5–2 million electric vehicles to the road per year. In buildings, 400,000–500,000 heat pumps would be installed annually by 2030, and the share of district heating would double until 2050. In the scenario, coal needs to be phased out by 2030. Wind and Photovoltaic (PV) capacities would need to more than double to 290 GW by 2030 and reach 500 GW by 2050. The BS results indicate that a significant acceleration of the energy transition is necessary before 2030 and that this higher pace must be maintained thereafter until 2050.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14021025</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon dioxide ; Carbon dioxide removal ; Climate change ; District heating ; Electric vehicles ; Emissions ; Energy ; Energy industry ; GDP ; Gross Domestic Product ; Heat exchangers ; Heat pumps ; Historical account ; Optimization ; Paris Agreement ; Per capita ; Photovoltaics ; Renewable resources</subject><ispartof>Sustainability, 2022-01, Vol.14 (2), p.1025, Article 1025</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2105-d87a87903e6e3c6a0dc956d9b435cab9e0760e37e397ded62601f688ad71a94c3</citedby><cites>FETCH-LOGICAL-c2105-d87a87903e6e3c6a0dc956d9b435cab9e0760e37e397ded62601f688ad71a94c3</cites><orcidid>0000-0002-7502-6841 ; 0000-0001-7591-0306 ; 0000-0003-1113-0225 ; 0000-0002-6728-7451 ; 0000-0003-2775-5457 ; 0000-0002-2878-0139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621386355/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621386355?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Simon, Sonja</creatorcontrib><creatorcontrib>Xiao, Mengzhu</creatorcontrib><creatorcontrib>Harpprecht, Carina</creatorcontrib><creatorcontrib>Sasanpour, Shima</creatorcontrib><creatorcontrib>Gardian, Hedda</creatorcontrib><creatorcontrib>Pregger, Thomas</creatorcontrib><title>A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget</title><title>Sustainability</title><description>We present an energy transition pathway constrained by a total CO2 budget of 7 Gt allocated to the German energy system after 2020, the Budget Scenario (BS). We apply a normative backcasting approach for scenario building based on historical data and assumptions from existing scenario studies. The modeling approach combines a comprehensive energy system model (ESM) with REMix—a cost optimization model for power and heat that explicitly incorporates sector coupling. To achieve the necessary CO2 reduction, the scenario focuses on electrifying all end use sectors until 2030, adding 1.5–2 million electric vehicles to the road per year. In buildings, 400,000–500,000 heat pumps would be installed annually by 2030, and the share of district heating would double until 2050. In the scenario, coal needs to be phased out by 2030. Wind and Photovoltaic (PV) capacities would need to more than double to 290 GW by 2030 and reach 500 GW by 2050. The BS results indicate that a significant acceleration of the energy transition is necessary before 2030 and that this higher pace must be maintained thereafter until 2050.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide removal</subject><subject>Climate change</subject><subject>District heating</subject><subject>Electric vehicles</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy industry</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Historical account</subject><subject>Optimization</subject><subject>Paris Agreement</subject><subject>Per capita</subject><subject>Photovoltaics</subject><subject>Renewable resources</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkMFKAzEQhoMoWLQXnyDgTdg62TTJ5liXWoWignpestnZdku7qUmW0rfyGXwyVyoo4lxmYL6Zf-Yn5ILBiHMN16FjY0gZpOKIDFJQLGEg4PhXfUqGIaygD86ZZnJAHib0ycTlzuxp7TyNS6Qz9BvT0mmLfrGnz2hj38jdZmtiU66R7pq4pIaykaAf7znNjS9dS2-6aoHxnJzUZh1w-J3PyOvt9CW_S-aPs_t8Mk9sf59IqkyZTGngKJFbaaCyWshKl2MurCk1gpKAXCHXqsJKphJYLbPMVIoZPbb8jFwe9m69e-swxGLlOt_2kkUqU8YzyYXoqasDZb0LwWNdbH2zMX5fMCi-LCt-LOth-APbJvYvuzZ606z_G_kEJnZrsw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Simon, Sonja</creator><creator>Xiao, Mengzhu</creator><creator>Harpprecht, Carina</creator><creator>Sasanpour, Shima</creator><creator>Gardian, Hedda</creator><creator>Pregger, Thomas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7502-6841</orcidid><orcidid>https://orcid.org/0000-0001-7591-0306</orcidid><orcidid>https://orcid.org/0000-0003-1113-0225</orcidid><orcidid>https://orcid.org/0000-0002-6728-7451</orcidid><orcidid>https://orcid.org/0000-0003-2775-5457</orcidid><orcidid>https://orcid.org/0000-0002-2878-0139</orcidid></search><sort><creationdate>20220101</creationdate><title>A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget</title><author>Simon, Sonja ; Xiao, Mengzhu ; Harpprecht, Carina ; Sasanpour, Shima ; Gardian, Hedda ; Pregger, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2105-d87a87903e6e3c6a0dc956d9b435cab9e0760e37e397ded62601f688ad71a94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide removal</topic><topic>Climate change</topic><topic>District heating</topic><topic>Electric vehicles</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy industry</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Historical account</topic><topic>Optimization</topic><topic>Paris Agreement</topic><topic>Per capita</topic><topic>Photovoltaics</topic><topic>Renewable resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Sonja</creatorcontrib><creatorcontrib>Xiao, Mengzhu</creatorcontrib><creatorcontrib>Harpprecht, Carina</creatorcontrib><creatorcontrib>Sasanpour, Shima</creatorcontrib><creatorcontrib>Gardian, Hedda</creatorcontrib><creatorcontrib>Pregger, Thomas</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Sonja</au><au>Xiao, Mengzhu</au><au>Harpprecht, Carina</au><au>Sasanpour, Shima</au><au>Gardian, Hedda</au><au>Pregger, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget</atitle><jtitle>Sustainability</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>1025</spage><pages>1025-</pages><artnum>1025</artnum><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>We present an energy transition pathway constrained by a total CO2 budget of 7 Gt allocated to the German energy system after 2020, the Budget Scenario (BS). We apply a normative backcasting approach for scenario building based on historical data and assumptions from existing scenario studies. The modeling approach combines a comprehensive energy system model (ESM) with REMix—a cost optimization model for power and heat that explicitly incorporates sector coupling. To achieve the necessary CO2 reduction, the scenario focuses on electrifying all end use sectors until 2030, adding 1.5–2 million electric vehicles to the road per year. In buildings, 400,000–500,000 heat pumps would be installed annually by 2030, and the share of district heating would double until 2050. In the scenario, coal needs to be phased out by 2030. Wind and Photovoltaic (PV) capacities would need to more than double to 290 GW by 2030 and reach 500 GW by 2050. The BS results indicate that a significant acceleration of the energy transition is necessary before 2030 and that this higher pace must be maintained thereafter until 2050.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14021025</doi><orcidid>https://orcid.org/0000-0002-7502-6841</orcidid><orcidid>https://orcid.org/0000-0001-7591-0306</orcidid><orcidid>https://orcid.org/0000-0003-1113-0225</orcidid><orcidid>https://orcid.org/0000-0002-6728-7451</orcidid><orcidid>https://orcid.org/0000-0003-2775-5457</orcidid><orcidid>https://orcid.org/0000-0002-2878-0139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-01, Vol.14 (2), p.1025, Article 1025
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2621386355
source Publicly Available Content (ProQuest)
subjects Carbon dioxide
Carbon dioxide removal
Climate change
District heating
Electric vehicles
Emissions
Energy
Energy industry
GDP
Gross Domestic Product
Heat exchangers
Heat pumps
Historical account
Optimization
Paris Agreement
Per capita
Photovoltaics
Renewable resources
title A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pathway%20for%20the%20German%20Energy%20Sector%20Compatible%20with%20a%201.5%20%C2%B0C%20Carbon%20Budget&rft.jtitle=Sustainability&rft.au=Simon,%20Sonja&rft.date=2022-01-01&rft.volume=14&rft.issue=2&rft.spage=1025&rft.pages=1025-&rft.artnum=1025&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14021025&rft_dat=%3Cproquest_cross%3E2621386355%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2105-d87a87903e6e3c6a0dc956d9b435cab9e0760e37e397ded62601f688ad71a94c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621386355&rft_id=info:pmid/&rfr_iscdi=true