Loading…

A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application

The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2022-05, Vol.37 (5), p.5606-5624
Main Authors: Anurag, Anup, Acharya, Sayan, Kolli, Nithin, Bhattacharya, Subhashish, Weatherford, Todd R., Parker, Andrew A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973
cites cdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973
container_end_page 5624
container_issue 5
container_start_page 5606
container_title IEEE transactions on power electronics
container_volume 37
creator Anurag, Anup
Acharya, Sayan
Kolli, Nithin
Bhattacharya, Subhashish
Weatherford, Todd R.
Parker, Andrew A.
description The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high dv/dt (up to 100 kV/\mus). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container.
doi_str_mv 10.1109/TPEL.2021.3131262
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621792786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628047</ieee_id><sourcerecordid>2621792786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOD9-gHgT8DrznKRNm8sy5gdMFDq9LWlzitWtnUkcDP-8HROvzsX7vs-Bh7ErhCkimNvly3wxlSBxqlCh1PKITdAkKAAhO2YTyPNU5MaoU3YWwgcAJinghP0UfPnuicTLuw3EiyZ2WxJ3fuijmPeOz4Z-Sz6S5-UuRFrzeW_rFTle7ziC-HzjZTfjT8_l3XwZeNGtx8hGbnk5rDonymgj8aW3fWgHvx4xxWaz6hobu6G_YCetXQW6_Lvn7HWkzB7E4vn-cVYsRKOUjqIxqZK1NZCmqdMGna1VkiVWN5lOszaxrWkl1NJYTEDJxpHLZQsanHZUm0yds5sDd-OHr28KsfoYvn0_vqxGUZgZmeV6bOGh1fghBE9ttfHd2vpdhVDtHVd7x9XecfXneNxcHzYdEf33jZY5JJn6BfULdlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621792786</pqid></control><display><type>article</type><title>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Anurag, Anup ; Acharya, Sayan ; Kolli, Nithin ; Bhattacharya, Subhashish ; Weatherford, Todd R. ; Parker, Andrew A.</creator><creatorcontrib>Anurag, Anup ; Acharya, Sayan ; Kolli, Nithin ; Bhattacharya, Subhashish ; Weatherford, Todd R. ; Parker, Andrew A.</creatorcontrib><description><![CDATA[The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high <inline-formula><tex-math notation="LaTeX">dv/dt</tex-math></inline-formula> (up to 100 kV/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>s). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container.]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3131262</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active-front-end converter (AFEC) system ; Busbars ; Control systems design ; gate driver ; High voltages ; Inductors ; Insulated gate bipolar transistors ; Logic gates ; Medium voltage ; medium voltage (MV) ; Modules ; MOSFET ; MOSFETs ; Power transformer insulation ; Semiconductor devices ; Silicon carbide ; silicon carbide (SiC) devices ; solid-state transformer ; Voltage ; Voltage converters ; XHV-6</subject><ispartof>IEEE transactions on power electronics, 2022-05, Vol.37 (5), p.5606-5624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</citedby><cites>FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</cites><orcidid>0000-0002-6984-3191 ; 0000-0001-9311-5744 ; 0000-0001-7407-7260 ; 0000-0001-8482-8160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Anurag, Anup</creatorcontrib><creatorcontrib>Acharya, Sayan</creatorcontrib><creatorcontrib>Kolli, Nithin</creatorcontrib><creatorcontrib>Bhattacharya, Subhashish</creatorcontrib><creatorcontrib>Weatherford, Todd R.</creatorcontrib><creatorcontrib>Parker, Andrew A.</creatorcontrib><title>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high <inline-formula><tex-math notation="LaTeX">dv/dt</tex-math></inline-formula> (up to 100 kV/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>s). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container.]]></description><subject>Active-front-end converter (AFEC) system</subject><subject>Busbars</subject><subject>Control systems design</subject><subject>gate driver</subject><subject>High voltages</subject><subject>Inductors</subject><subject>Insulated gate bipolar transistors</subject><subject>Logic gates</subject><subject>Medium voltage</subject><subject>medium voltage (MV)</subject><subject>Modules</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Power transformer insulation</subject><subject>Semiconductor devices</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) devices</subject><subject>solid-state transformer</subject><subject>Voltage</subject><subject>Voltage converters</subject><subject>XHV-6</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOD9-gHgT8DrznKRNm8sy5gdMFDq9LWlzitWtnUkcDP-8HROvzsX7vs-Bh7ErhCkimNvly3wxlSBxqlCh1PKITdAkKAAhO2YTyPNU5MaoU3YWwgcAJinghP0UfPnuicTLuw3EiyZ2WxJ3fuijmPeOz4Z-Sz6S5-UuRFrzeW_rFTle7ziC-HzjZTfjT8_l3XwZeNGtx8hGbnk5rDonymgj8aW3fWgHvx4xxWaz6hobu6G_YCetXQW6_Lvn7HWkzB7E4vn-cVYsRKOUjqIxqZK1NZCmqdMGna1VkiVWN5lOszaxrWkl1NJYTEDJxpHLZQsanHZUm0yds5sDd-OHr28KsfoYvn0_vqxGUZgZmeV6bOGh1fghBE9ttfHd2vpdhVDtHVd7x9XecfXneNxcHzYdEf33jZY5JJn6BfULdlc</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Anurag, Anup</creator><creator>Acharya, Sayan</creator><creator>Kolli, Nithin</creator><creator>Bhattacharya, Subhashish</creator><creator>Weatherford, Todd R.</creator><creator>Parker, Andrew A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6984-3191</orcidid><orcidid>https://orcid.org/0000-0001-9311-5744</orcidid><orcidid>https://orcid.org/0000-0001-7407-7260</orcidid><orcidid>https://orcid.org/0000-0001-8482-8160</orcidid></search><sort><creationdate>20220501</creationdate><title>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</title><author>Anurag, Anup ; Acharya, Sayan ; Kolli, Nithin ; Bhattacharya, Subhashish ; Weatherford, Todd R. ; Parker, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active-front-end converter (AFEC) system</topic><topic>Busbars</topic><topic>Control systems design</topic><topic>gate driver</topic><topic>High voltages</topic><topic>Inductors</topic><topic>Insulated gate bipolar transistors</topic><topic>Logic gates</topic><topic>Medium voltage</topic><topic>medium voltage (MV)</topic><topic>Modules</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Power transformer insulation</topic><topic>Semiconductor devices</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) devices</topic><topic>solid-state transformer</topic><topic>Voltage</topic><topic>Voltage converters</topic><topic>XHV-6</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anurag, Anup</creatorcontrib><creatorcontrib>Acharya, Sayan</creatorcontrib><creatorcontrib>Kolli, Nithin</creatorcontrib><creatorcontrib>Bhattacharya, Subhashish</creatorcontrib><creatorcontrib>Weatherford, Todd R.</creatorcontrib><creatorcontrib>Parker, Andrew A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anurag, Anup</au><au>Acharya, Sayan</au><au>Kolli, Nithin</au><au>Bhattacharya, Subhashish</au><au>Weatherford, Todd R.</au><au>Parker, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>37</volume><issue>5</issue><spage>5606</spage><epage>5624</epage><pages>5606-5624</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high <inline-formula><tex-math notation="LaTeX">dv/dt</tex-math></inline-formula> (up to 100 kV/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>s). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3131262</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6984-3191</orcidid><orcidid>https://orcid.org/0000-0001-9311-5744</orcidid><orcidid>https://orcid.org/0000-0001-7407-7260</orcidid><orcidid>https://orcid.org/0000-0001-8482-8160</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-05, Vol.37 (5), p.5606-5624
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2621792786
source IEEE Electronic Library (IEL) Journals
subjects Active-front-end converter (AFEC) system
Busbars
Control systems design
gate driver
High voltages
Inductors
Insulated gate bipolar transistors
Logic gates
Medium voltage
medium voltage (MV)
Modules
MOSFET
MOSFETs
Power transformer insulation
Semiconductor devices
Silicon carbide
silicon carbide (SiC) devices
solid-state transformer
Voltage
Voltage converters
XHV-6
title A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Three-Phase%20Active-Front-End%20Converter%20System%20Enabled%20by%2010-kV%20SiC%20MOSFETs%20Aimed%20at%20a%20Solid-State%20Transformer%20Application&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Anurag,%20Anup&rft.date=2022-05-01&rft.volume=37&rft.issue=5&rft.spage=5606&rft.epage=5624&rft.pages=5606-5624&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3131262&rft_dat=%3Cproquest_cross%3E2621792786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621792786&rft_id=info:pmid/&rft_ieee_id=9628047&rfr_iscdi=true