Loading…
A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application
The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing a...
Saved in:
Published in: | IEEE transactions on power electronics 2022-05, Vol.37 (5), p.5606-5624 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973 |
container_end_page | 5624 |
container_issue | 5 |
container_start_page | 5606 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Anurag, Anup Acharya, Sayan Kolli, Nithin Bhattacharya, Subhashish Weatherford, Todd R. Parker, Andrew A. |
description | The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high dv/dt (up to 100 kV/\mus). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container. |
doi_str_mv | 10.1109/TPEL.2021.3131262 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621792786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628047</ieee_id><sourcerecordid>2621792786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOD9-gHgT8DrznKRNm8sy5gdMFDq9LWlzitWtnUkcDP-8HROvzsX7vs-Bh7ErhCkimNvly3wxlSBxqlCh1PKITdAkKAAhO2YTyPNU5MaoU3YWwgcAJinghP0UfPnuicTLuw3EiyZ2WxJ3fuijmPeOz4Z-Sz6S5-UuRFrzeW_rFTle7ziC-HzjZTfjT8_l3XwZeNGtx8hGbnk5rDonymgj8aW3fWgHvx4xxWaz6hobu6G_YCetXQW6_Lvn7HWkzB7E4vn-cVYsRKOUjqIxqZK1NZCmqdMGna1VkiVWN5lOszaxrWkl1NJYTEDJxpHLZQsanHZUm0yds5sDd-OHr28KsfoYvn0_vqxGUZgZmeV6bOGh1fghBE9ttfHd2vpdhVDtHVd7x9XecfXneNxcHzYdEf33jZY5JJn6BfULdlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621792786</pqid></control><display><type>article</type><title>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Anurag, Anup ; Acharya, Sayan ; Kolli, Nithin ; Bhattacharya, Subhashish ; Weatherford, Todd R. ; Parker, Andrew A.</creator><creatorcontrib>Anurag, Anup ; Acharya, Sayan ; Kolli, Nithin ; Bhattacharya, Subhashish ; Weatherford, Todd R. ; Parker, Andrew A.</creatorcontrib><description><![CDATA[The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high <inline-formula><tex-math notation="LaTeX">dv/dt</tex-math></inline-formula> (up to 100 kV/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>s). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container.]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3131262</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active-front-end converter (AFEC) system ; Busbars ; Control systems design ; gate driver ; High voltages ; Inductors ; Insulated gate bipolar transistors ; Logic gates ; Medium voltage ; medium voltage (MV) ; Modules ; MOSFET ; MOSFETs ; Power transformer insulation ; Semiconductor devices ; Silicon carbide ; silicon carbide (SiC) devices ; solid-state transformer ; Voltage ; Voltage converters ; XHV-6</subject><ispartof>IEEE transactions on power electronics, 2022-05, Vol.37 (5), p.5606-5624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</citedby><cites>FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</cites><orcidid>0000-0002-6984-3191 ; 0000-0001-9311-5744 ; 0000-0001-7407-7260 ; 0000-0001-8482-8160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Anurag, Anup</creatorcontrib><creatorcontrib>Acharya, Sayan</creatorcontrib><creatorcontrib>Kolli, Nithin</creatorcontrib><creatorcontrib>Bhattacharya, Subhashish</creatorcontrib><creatorcontrib>Weatherford, Todd R.</creatorcontrib><creatorcontrib>Parker, Andrew A.</creatorcontrib><title>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high <inline-formula><tex-math notation="LaTeX">dv/dt</tex-math></inline-formula> (up to 100 kV/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>s). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container.]]></description><subject>Active-front-end converter (AFEC) system</subject><subject>Busbars</subject><subject>Control systems design</subject><subject>gate driver</subject><subject>High voltages</subject><subject>Inductors</subject><subject>Insulated gate bipolar transistors</subject><subject>Logic gates</subject><subject>Medium voltage</subject><subject>medium voltage (MV)</subject><subject>Modules</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Power transformer insulation</subject><subject>Semiconductor devices</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) devices</subject><subject>solid-state transformer</subject><subject>Voltage</subject><subject>Voltage converters</subject><subject>XHV-6</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOD9-gHgT8DrznKRNm8sy5gdMFDq9LWlzitWtnUkcDP-8HROvzsX7vs-Bh7ErhCkimNvly3wxlSBxqlCh1PKITdAkKAAhO2YTyPNU5MaoU3YWwgcAJinghP0UfPnuicTLuw3EiyZ2WxJ3fuijmPeOz4Z-Sz6S5-UuRFrzeW_rFTle7ziC-HzjZTfjT8_l3XwZeNGtx8hGbnk5rDonymgj8aW3fWgHvx4xxWaz6hobu6G_YCetXQW6_Lvn7HWkzB7E4vn-cVYsRKOUjqIxqZK1NZCmqdMGna1VkiVWN5lOszaxrWkl1NJYTEDJxpHLZQsanHZUm0yds5sDd-OHr28KsfoYvn0_vqxGUZgZmeV6bOGh1fghBE9ttfHd2vpdhVDtHVd7x9XecfXneNxcHzYdEf33jZY5JJn6BfULdlc</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Anurag, Anup</creator><creator>Acharya, Sayan</creator><creator>Kolli, Nithin</creator><creator>Bhattacharya, Subhashish</creator><creator>Weatherford, Todd R.</creator><creator>Parker, Andrew A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6984-3191</orcidid><orcidid>https://orcid.org/0000-0001-9311-5744</orcidid><orcidid>https://orcid.org/0000-0001-7407-7260</orcidid><orcidid>https://orcid.org/0000-0001-8482-8160</orcidid></search><sort><creationdate>20220501</creationdate><title>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</title><author>Anurag, Anup ; Acharya, Sayan ; Kolli, Nithin ; Bhattacharya, Subhashish ; Weatherford, Todd R. ; Parker, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active-front-end converter (AFEC) system</topic><topic>Busbars</topic><topic>Control systems design</topic><topic>gate driver</topic><topic>High voltages</topic><topic>Inductors</topic><topic>Insulated gate bipolar transistors</topic><topic>Logic gates</topic><topic>Medium voltage</topic><topic>medium voltage (MV)</topic><topic>Modules</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Power transformer insulation</topic><topic>Semiconductor devices</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) devices</topic><topic>solid-state transformer</topic><topic>Voltage</topic><topic>Voltage converters</topic><topic>XHV-6</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anurag, Anup</creatorcontrib><creatorcontrib>Acharya, Sayan</creatorcontrib><creatorcontrib>Kolli, Nithin</creatorcontrib><creatorcontrib>Bhattacharya, Subhashish</creatorcontrib><creatorcontrib>Weatherford, Todd R.</creatorcontrib><creatorcontrib>Parker, Andrew A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anurag, Anup</au><au>Acharya, Sayan</au><au>Kolli, Nithin</au><au>Bhattacharya, Subhashish</au><au>Weatherford, Todd R.</au><au>Parker, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>37</volume><issue>5</issue><spage>5606</spage><epage>5624</epage><pages>5606-5624</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[The use of high-voltage silicon carbide (SiC) devices can eliminate multilevel and cascaded converters and their complicated control strategies, making converter systems simple and reliable. A three-phase two-level voltage-source converter system serves as a simple converter system for interfacing any dc source to a three-phase grid. However, when the high-voltage devices are used in two-level converters, they are exposed to a high-voltage peak stress and a high <inline-formula><tex-math notation="LaTeX">dv/dt</tex-math></inline-formula> (up to 100 kV/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>s). Operating these semiconductor devices at these stress levels requires careful design not only of the semiconductor die and the module, but also of the gate drivers, busbars, and passive filters. This article demonstrates the operation of 10-kV SiC mosfet s and discusses the design considerations, advantages, and challenges associated with the operation of the three-phase two-level medium-voltage converter system used as the active-front-end converter system. Reliable operation of the medium-voltage converter system requires the development of reliable high-voltage modules and auxiliary parts, such as gate drivers, busbars, inductors, voltage and current sensors, and proper design of the controller system. Successful tests demonstrating continuous field operation of the medium-voltage active-front-end converter at a nominal rating of 7.2-kV dc-link voltage is demonstrated for the first time in the literature. The results indicate that these devices can accelerate the growth and deployment of medium-voltage SiC devices for field operation, as demonstrated by the operation inside the mobile container.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3131262</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6984-3191</orcidid><orcidid>https://orcid.org/0000-0001-9311-5744</orcidid><orcidid>https://orcid.org/0000-0001-7407-7260</orcidid><orcidid>https://orcid.org/0000-0001-8482-8160</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-05, Vol.37 (5), p.5606-5624 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2621792786 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Active-front-end converter (AFEC) system Busbars Control systems design gate driver High voltages Inductors Insulated gate bipolar transistors Logic gates Medium voltage medium voltage (MV) Modules MOSFET MOSFETs Power transformer insulation Semiconductor devices Silicon carbide silicon carbide (SiC) devices solid-state transformer Voltage Voltage converters XHV-6 |
title | A Three-Phase Active-Front-End Converter System Enabled by 10-kV SiC MOSFETs Aimed at a Solid-State Transformer Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Three-Phase%20Active-Front-End%20Converter%20System%20Enabled%20by%2010-kV%20SiC%20MOSFETs%20Aimed%20at%20a%20Solid-State%20Transformer%20Application&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Anurag,%20Anup&rft.date=2022-05-01&rft.volume=37&rft.issue=5&rft.spage=5606&rft.epage=5624&rft.pages=5606-5624&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3131262&rft_dat=%3Cproquest_cross%3E2621792786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-c9532ba90555d691dab3474a6c7657f4af9f20b29a14032cded82f060d6deb973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621792786&rft_id=info:pmid/&rft_ieee_id=9628047&rfr_iscdi=true |