Loading…

Direct Integration of Optimized Phase-Change Heat Spreaders Into SiC Power Module for Thermal Performance Improvements Under High Heat Flux

Silicon carbide (SiC) power modules are attractive in many applications due to the superiority of their semiconductor characteristics. However, power modules are subjected to repetitive thermo-mechanical stress caused by the mismatch of the coefficient of thermal expansion between different layers o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2022-05, Vol.37 (5), p.5398-5410
Main Authors: Mu, Wei, Wang, Laili, Wang, Binyu, Zhang, Tongyu, Yang, Fengtao, Gan, Yongmei, Zhang, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-9a0a3cfb97f5fe14ac8556f247623f6d22831d6e53dea4e72ef99c689ee1d2783
cites cdi_FETCH-LOGICAL-c293t-9a0a3cfb97f5fe14ac8556f247623f6d22831d6e53dea4e72ef99c689ee1d2783
container_end_page 5410
container_issue 5
container_start_page 5398
container_title IEEE transactions on power electronics
container_volume 37
creator Mu, Wei
Wang, Laili
Wang, Binyu
Zhang, Tongyu
Yang, Fengtao
Gan, Yongmei
Zhang, Hong
description Silicon carbide (SiC) power modules are attractive in many applications due to the superiority of their semiconductor characteristics. However, power modules are subjected to repetitive thermo-mechanical stress caused by the mismatch of the coefficient of thermal expansion between different layers of materials. Moreover, the relatively smaller die size of SiC chips makes the heat flux increase significantly, which brings new challenges to the thermal management and reliability of SiC power modules. To tackle these challenges, this article proposes a new thermal enhanced packaging method based on vapor chamber (VC) phase change heat spreader (PCHS) for SiC power modules, achieving the advantages of high thermal conductivity, low weight, low cost, and low thermal stress. In this new design, SiC mosfet bare dies are directly soldered on the top of VC-PCHS, which not only act as heat spreaders but also conduct the drain current of mosfet s. The integrated VC-PCHS is optimized based on thermal and thermomechanical performance. An SiC power module prototype directly integrated with VC-PCHS is built using a new fabrication process. Both the simulations and experiments demonstrate significant improvements in thermal and thermomechanical performance. The modules integrated with VC-PCHS can operate under 200 W of power dissipation per die (632 W/cm 2 ) without exceeding the maximum rated junction temperature. This article reveals the potential of directly integrating phase change cooling components inside power modules, providing a new solution to improve the thermal performance and reliability of SiC power modules without adding complexity and energy consumptions to external cooling systems.
doi_str_mv 10.1109/TPEL.2021.3125329
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621793666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606521</ieee_id><sourcerecordid>2621793666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9a0a3cfb97f5fe14ac8556f247623f6d22831d6e53dea4e72ef99c689ee1d2783</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk7RpcynTucFkhW3XJbYna8fazKTz6y_4p23Z8Opw4H3ec3gIuQU2AmDqYZU-z0eccRgJ4JHg6owMQIUQMGDxORmwJImCRClxSa683zIGYcRgQH6fKod5S2dNixun28o21Bq62LdVXf1gQdNSewzGpW42SKeoW7rcO9QFOt9Dli6rMU3tJzr6aovDDqmxjq5KdLXe0RRdt9a6yZHO6r2zH1hj03q6broGOq025bF0sjt8XZMLo3ceb05zSNaT59V4GswXL7Px4zzIuRJtoDTTIjdvKjaRQQh1nkSRNDyMJRdGFpwnAgqJkShQhxhzNErlMlGIUPA4EUNyf-zt_nk_oG-zrT24pjuZcckhVkJK2aXgmMqd9d6hyfauqrX7zoBlvfOsd571zrOT8465OzIVIv7nlWQy4iD-AJiLfo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621793666</pqid></control><display><type>article</type><title>Direct Integration of Optimized Phase-Change Heat Spreaders Into SiC Power Module for Thermal Performance Improvements Under High Heat Flux</title><source>IEEE Xplore (Online service)</source><creator>Mu, Wei ; Wang, Laili ; Wang, Binyu ; Zhang, Tongyu ; Yang, Fengtao ; Gan, Yongmei ; Zhang, Hong</creator><creatorcontrib>Mu, Wei ; Wang, Laili ; Wang, Binyu ; Zhang, Tongyu ; Yang, Fengtao ; Gan, Yongmei ; Zhang, Hong</creatorcontrib><description>Silicon carbide (SiC) power modules are attractive in many applications due to the superiority of their semiconductor characteristics. However, power modules are subjected to repetitive thermo-mechanical stress caused by the mismatch of the coefficient of thermal expansion between different layers of materials. Moreover, the relatively smaller die size of SiC chips makes the heat flux increase significantly, which brings new challenges to the thermal management and reliability of SiC power modules. To tackle these challenges, this article proposes a new thermal enhanced packaging method based on vapor chamber (VC) phase change heat spreader (PCHS) for SiC power modules, achieving the advantages of high thermal conductivity, low weight, low cost, and low thermal stress. In this new design, SiC mosfet bare dies are directly soldered on the top of VC-PCHS, which not only act as heat spreaders but also conduct the drain current of mosfet s. The integrated VC-PCHS is optimized based on thermal and thermomechanical performance. An SiC power module prototype directly integrated with VC-PCHS is built using a new fabrication process. Both the simulations and experiments demonstrate significant improvements in thermal and thermomechanical performance. The modules integrated with VC-PCHS can operate under 200 W of power dissipation per die (632 W/cm 2 ) without exceeding the maximum rated junction temperature. This article reveals the potential of directly integrating phase change cooling components inside power modules, providing a new solution to improve the thermal performance and reliability of SiC power modules without adding complexity and energy consumptions to external cooling systems.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3125329</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cooling ; Cooling systems ; Electronic packaging thermal management ; Heat flux ; Heat transfer ; Heating systems ; High heat flux ; Modules ; Multichip modules ; Phase change ; phase-change heat spreader (PCHS) ; Power consumption ; Reliability ; SiC power module packaging ; Silicon carbide ; Spreaders ; Thermal conductivity ; Thermal expansion ; Thermal management ; Thermal resistance ; Thermal stress ; Vanadium carbide ; vapor chamber (VC)</subject><ispartof>IEEE transactions on power electronics, 2022-05, Vol.37 (5), p.5398-5410</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9a0a3cfb97f5fe14ac8556f247623f6d22831d6e53dea4e72ef99c689ee1d2783</citedby><cites>FETCH-LOGICAL-c293t-9a0a3cfb97f5fe14ac8556f247623f6d22831d6e53dea4e72ef99c689ee1d2783</cites><orcidid>0000-0003-4778-5901 ; 0000-0002-9938-5590 ; 0000-0003-1277-0208 ; 0000-0002-6582-5551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wang, Binyu</creatorcontrib><creatorcontrib>Zhang, Tongyu</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><title>Direct Integration of Optimized Phase-Change Heat Spreaders Into SiC Power Module for Thermal Performance Improvements Under High Heat Flux</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Silicon carbide (SiC) power modules are attractive in many applications due to the superiority of their semiconductor characteristics. However, power modules are subjected to repetitive thermo-mechanical stress caused by the mismatch of the coefficient of thermal expansion between different layers of materials. Moreover, the relatively smaller die size of SiC chips makes the heat flux increase significantly, which brings new challenges to the thermal management and reliability of SiC power modules. To tackle these challenges, this article proposes a new thermal enhanced packaging method based on vapor chamber (VC) phase change heat spreader (PCHS) for SiC power modules, achieving the advantages of high thermal conductivity, low weight, low cost, and low thermal stress. In this new design, SiC mosfet bare dies are directly soldered on the top of VC-PCHS, which not only act as heat spreaders but also conduct the drain current of mosfet s. The integrated VC-PCHS is optimized based on thermal and thermomechanical performance. An SiC power module prototype directly integrated with VC-PCHS is built using a new fabrication process. Both the simulations and experiments demonstrate significant improvements in thermal and thermomechanical performance. The modules integrated with VC-PCHS can operate under 200 W of power dissipation per die (632 W/cm 2 ) without exceeding the maximum rated junction temperature. This article reveals the potential of directly integrating phase change cooling components inside power modules, providing a new solution to improve the thermal performance and reliability of SiC power modules without adding complexity and energy consumptions to external cooling systems.</description><subject>Cooling</subject><subject>Cooling systems</subject><subject>Electronic packaging thermal management</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>High heat flux</subject><subject>Modules</subject><subject>Multichip modules</subject><subject>Phase change</subject><subject>phase-change heat spreader (PCHS)</subject><subject>Power consumption</subject><subject>Reliability</subject><subject>SiC power module packaging</subject><subject>Silicon carbide</subject><subject>Spreaders</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Thermal stress</subject><subject>Vanadium carbide</subject><subject>vapor chamber (VC)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk7RpcynTucFkhW3XJbYna8fazKTz6y_4p23Z8Opw4H3ec3gIuQU2AmDqYZU-z0eccRgJ4JHg6owMQIUQMGDxORmwJImCRClxSa683zIGYcRgQH6fKod5S2dNixun28o21Bq62LdVXf1gQdNSewzGpW42SKeoW7rcO9QFOt9Dli6rMU3tJzr6aovDDqmxjq5KdLXe0RRdt9a6yZHO6r2zH1hj03q6broGOq025bF0sjt8XZMLo3ceb05zSNaT59V4GswXL7Px4zzIuRJtoDTTIjdvKjaRQQh1nkSRNDyMJRdGFpwnAgqJkShQhxhzNErlMlGIUPA4EUNyf-zt_nk_oG-zrT24pjuZcckhVkJK2aXgmMqd9d6hyfauqrX7zoBlvfOsd571zrOT8465OzIVIv7nlWQy4iD-AJiLfo0</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Mu, Wei</creator><creator>Wang, Laili</creator><creator>Wang, Binyu</creator><creator>Zhang, Tongyu</creator><creator>Yang, Fengtao</creator><creator>Gan, Yongmei</creator><creator>Zhang, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0002-6582-5551</orcidid></search><sort><creationdate>20220501</creationdate><title>Direct Integration of Optimized Phase-Change Heat Spreaders Into SiC Power Module for Thermal Performance Improvements Under High Heat Flux</title><author>Mu, Wei ; Wang, Laili ; Wang, Binyu ; Zhang, Tongyu ; Yang, Fengtao ; Gan, Yongmei ; Zhang, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9a0a3cfb97f5fe14ac8556f247623f6d22831d6e53dea4e72ef99c689ee1d2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cooling</topic><topic>Cooling systems</topic><topic>Electronic packaging thermal management</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>High heat flux</topic><topic>Modules</topic><topic>Multichip modules</topic><topic>Phase change</topic><topic>phase-change heat spreader (PCHS)</topic><topic>Power consumption</topic><topic>Reliability</topic><topic>SiC power module packaging</topic><topic>Silicon carbide</topic><topic>Spreaders</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Thermal stress</topic><topic>Vanadium carbide</topic><topic>vapor chamber (VC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wang, Binyu</creatorcontrib><creatorcontrib>Zhang, Tongyu</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Wei</au><au>Wang, Laili</au><au>Wang, Binyu</au><au>Zhang, Tongyu</au><au>Yang, Fengtao</au><au>Gan, Yongmei</au><au>Zhang, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Integration of Optimized Phase-Change Heat Spreaders Into SiC Power Module for Thermal Performance Improvements Under High Heat Flux</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>37</volume><issue>5</issue><spage>5398</spage><epage>5410</epage><pages>5398-5410</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Silicon carbide (SiC) power modules are attractive in many applications due to the superiority of their semiconductor characteristics. However, power modules are subjected to repetitive thermo-mechanical stress caused by the mismatch of the coefficient of thermal expansion between different layers of materials. Moreover, the relatively smaller die size of SiC chips makes the heat flux increase significantly, which brings new challenges to the thermal management and reliability of SiC power modules. To tackle these challenges, this article proposes a new thermal enhanced packaging method based on vapor chamber (VC) phase change heat spreader (PCHS) for SiC power modules, achieving the advantages of high thermal conductivity, low weight, low cost, and low thermal stress. In this new design, SiC mosfet bare dies are directly soldered on the top of VC-PCHS, which not only act as heat spreaders but also conduct the drain current of mosfet s. The integrated VC-PCHS is optimized based on thermal and thermomechanical performance. An SiC power module prototype directly integrated with VC-PCHS is built using a new fabrication process. Both the simulations and experiments demonstrate significant improvements in thermal and thermomechanical performance. The modules integrated with VC-PCHS can operate under 200 W of power dissipation per die (632 W/cm 2 ) without exceeding the maximum rated junction temperature. This article reveals the potential of directly integrating phase change cooling components inside power modules, providing a new solution to improve the thermal performance and reliability of SiC power modules without adding complexity and energy consumptions to external cooling systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3125329</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0002-6582-5551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-05, Vol.37 (5), p.5398-5410
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2621793666
source IEEE Xplore (Online service)
subjects Cooling
Cooling systems
Electronic packaging thermal management
Heat flux
Heat transfer
Heating systems
High heat flux
Modules
Multichip modules
Phase change
phase-change heat spreader (PCHS)
Power consumption
Reliability
SiC power module packaging
Silicon carbide
Spreaders
Thermal conductivity
Thermal expansion
Thermal management
Thermal resistance
Thermal stress
Vanadium carbide
vapor chamber (VC)
title Direct Integration of Optimized Phase-Change Heat Spreaders Into SiC Power Module for Thermal Performance Improvements Under High Heat Flux
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Integration%20of%20Optimized%20Phase-Change%20Heat%20Spreaders%20Into%20SiC%20Power%20Module%20for%20Thermal%20Performance%20Improvements%20Under%20High%20Heat%20Flux&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Mu,%20Wei&rft.date=2022-05-01&rft.volume=37&rft.issue=5&rft.spage=5398&rft.epage=5410&rft.pages=5398-5410&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3125329&rft_dat=%3Cproquest_cross%3E2621793666%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9a0a3cfb97f5fe14ac8556f247623f6d22831d6e53dea4e72ef99c689ee1d2783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621793666&rft_id=info:pmid/&rft_ieee_id=9606521&rfr_iscdi=true