Loading…

Reconfigurable Intelligent Surfaces: Potentials, Applications, and Challenges for 6G Wireless Networks

Reconfigurable intelligent surfaces (RISs), with the potential to realize smart radio environments, have emerged as an energy-efficient and a cost-effective technology to support the services and demands foreseen for coming decades. By leveraging a large number of low-cost passive reflecting element...

Full description

Saved in:
Bibliographic Details
Published in:IEEE wireless communications 2021-12, Vol.28 (6), p.184-191
Main Authors: Basharat, Sarah, Hassan, Syed Ali, Pervaiz, Haris, Mahmood, Aamir, Ding, Zhiguo, Gidlund, Mikael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconfigurable intelligent surfaces (RISs), with the potential to realize smart radio environments, have emerged as an energy-efficient and a cost-effective technology to support the services and demands foreseen for coming decades. By leveraging a large number of low-cost passive reflecting elements, RISs introduce a phase-shift in the impinging signal to create a favorable propagation channel between the transmitter and the receiver. In this article, we provide a tutorial overview of RISs for sixth-generation (6G) wireless networks. Specifically, we present a comprehensive discussion on performance gains that can be achieved by integrating RISs with emerging communication technologies. We address the practical implementation of RIS-assisted networks and expose the crucial challenges, including the RIS reconfiguration, deployment and size optimization, and channel estimation. Furthermore, we explore the integration of RIS and non-orthogonal multiple access (NOMA) under imperfect channel state information (CSI). Our numerical results illustrate the importance of better channel estimation in RIS-assisted networks and indicate the various factors that impact the size of RIS. Finally, we present promising future research directions for realizing RIS-assisted networks in 6G communication.
ISSN:1536-1284
1558-0687
1558-0687
DOI:10.1109/MWC.011.2100016