Loading…

STAR: Simultaneous Transmission and Reflection for 360° Coverage by Intelligent Surfaces

A novel simultaneous transmitting and reflecting (STAR) system design relying on reconfigurable intelligent surfaces (RISs) is conceived. First, an existing prototype is reviewed, and the potential benefits of STAR-RISs are discussed. Then the key differences between conventional reflecting-only RIS...

Full description

Saved in:
Bibliographic Details
Published in:IEEE wireless communications 2021-12, Vol.28 (6), p.102-109
Main Authors: Liu, Yuanwei, Mu, Xidong, Xu, Jiaqi, Schober, Robert, Hao, Yang, Poor, H. Vincent, Hanzo, Lajos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel simultaneous transmitting and reflecting (STAR) system design relying on reconfigurable intelligent surfaces (RISs) is conceived. First, an existing prototype is reviewed, and the potential benefits of STAR-RISs are discussed. Then the key differences between conventional reflecting-only RISs and STAR-RISs are identified from the perspectives of hardware design, physical principles, and communication system design. Furthermore, the basic signal model of STAR-RISs is introduced, and three practical protocols are proposed for their operation, namely energy splitting, mode switching, and time switching. Based on the proposed protocols, a range of promising application scenarios are put forward for integrating STAR-RISs into next-generation wireless networks. By considering the downlink of a typical RIS-aided multiple-input single-output system, numerical case studies are provided for revealing the superiority of STAR-RISs over other baselines when employing the proposed protocols. Finally, several open research problems are discussed.
ISSN:1536-1284
1558-0687
DOI:10.1109/MWC.001.2100191