Loading…
Packaging-enhanced optical fiber-chip interconnect with enlarged grating coupler and multimode fiber
Optical I/O plays a crucial role in the lifespan of lab-on-a-chip systems, from preliminary testing to operation in the target environment. However, due to the precise alignments required, efficient and reliable fiber-to-chip connections remain challenging, yielding inconsistent test results and uns...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical I/O plays a crucial role in the lifespan of lab-on-a-chip systems, from preliminary testing to operation in the target environment. However, due to the precise alignments required, efficient and reliable fiber-to-chip connections remain challenging, yielding inconsistent test results and unstable packaged performance. To overcome this issue, for use in single mode on-chip systems, we propose the incorporation of area-enlarged grating couplers working in conjunction with multimode fibers. This combination enables simpler, faster, and more reliable connections than the traditional small area grating coupler with single-mode fiber. In this work, we experimentally demonstrate a 3dB in-plane (X, Y) spatial tolerance of (10.2 {\mu}m, 17.3 {\mu}m) for the large area configuration, being at least (2.49, 3.33) times that of the small area one, and agreeing well with theoretical calculations. The simple concept is readily applicable to a range of photonic systems where cheaper more robust optical I/O is desired. |
---|---|
ISSN: | 2331-8422 |