Loading…

Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures

Alloy nanoparticles offer the possibility to tune functional properties of nanoscale structures. Prominent examples of tuned properties are the local surface plasmon resonance for sensing applications and adsorption energies for applications in catalysis. Laser synthesis of colloidal nanoparticles i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2022, Vol.57 (4), p.3041-3056
Main Authors: Waag, Friedrich, Fares, Wessam I. M. A., Li, Yao, Andronescu, Corina, Gökce, Bilal, Barcikowski, Stephan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-c7008f35ca3e0b50cf1e689d2535da61d14aecb8c1d4d7547e38fe8c970d7bd33
cites cdi_FETCH-LOGICAL-c469t-c7008f35ca3e0b50cf1e689d2535da61d14aecb8c1d4d7547e38fe8c970d7bd33
container_end_page 3056
container_issue 4
container_start_page 3041
container_title Journal of materials science
container_volume 57
creator Waag, Friedrich
Fares, Wessam I. M. A.
Li, Yao
Andronescu, Corina
Gökce, Bilal
Barcikowski, Stephan
description Alloy nanoparticles offer the possibility to tune functional properties of nanoscale structures. Prominent examples of tuned properties are the local surface plasmon resonance for sensing applications and adsorption energies for applications in catalysis. Laser synthesis of colloidal nanoparticles is well suited for generating alloy nanoparticles of desired compositions. Not only bulk alloys but also compacted mixtures of single-metal micropowders can serve as ablation targets. However, it is still unknown how mixing of the individual metals transfers from the micro- to the nanoscale. This work experimentally contributes to the elucidation of the mixing processes during the laser-based synthesis of alloy nanoparticles. Key parameters, such as the initial state of mixing in the ablation target, the laser pulse duration, the laser spot size, and the ablation time, are varied. Experiments are performed on a cobalt-iron alloy, relevant for application in oxidation catalysis, in ethanol. The extent of mixing in the targets after ablation and in individual nanoparticles are studied by energy-dispersive X-ray spectroscopy and by cyclic voltammetry at relevant conditions for the oxygen evolution reaction, as model reaction. The results point at the benefits of well pre-mixed ablation targets and longer laser pulse durations for the laser-based synthesis of alloy nanoparticles. Graphical abstract
doi_str_mv 10.1007/s10853-021-06731-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2621930085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691203165</galeid><sourcerecordid>A691203165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-c7008f35ca3e0b50cf1e689d2535da61d14aecb8c1d4d7547e38fe8c970d7bd33</originalsourceid><addsrcrecordid>eNp9kUuL1TAUx4MoeL36BVwF3OiiYx5t0y6HwceFAcHHOqTJ6TVDm1xzUpz7AfzeplMZGReSxYGT3_-8_oS85OyCM6beImddIysmeMVaJXklHpEdb5Ss6o7Jx2THmBCVqFv-lDxDvGGMNUrwHfl1cBCyH7012cdA40jzd6Cz8YHO_taHIz2laAGRlsz6hedQAnpcWTNN8UyDCfFkUvZ2AqTDmU4GIVEzTPdFbZxPxmZwpapN8RR_ukKUDnlJgM_Jk9FMCC_-xD359v7d16uP1fWnD4ery-vK1m2fK6sY60bZWCOBDQ2zI4e2651oZONMyx2vDdihs9zVTjW1AtmN0NleMacGJ-WevN7qlp1-LIBZzx4tTJMJEBfUopVtzZu-VgV99Q96E5cUynSFEryXbL34nlxs1NFMoH0YY07Glueg7BkDjL7kL9ueCyZ5uwrePBAUJsNtPpoFUR--fH7Iio0tB0NMMOpT8rNJZ82ZXm3Xm-262K7vbNeiiOQmwgKHI6S_c_9H9Rvsi7FW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621930085</pqid></control><display><type>article</type><title>Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Waag, Friedrich ; Fares, Wessam I. M. A. ; Li, Yao ; Andronescu, Corina ; Gökce, Bilal ; Barcikowski, Stephan</creator><creatorcontrib>Waag, Friedrich ; Fares, Wessam I. M. A. ; Li, Yao ; Andronescu, Corina ; Gökce, Bilal ; Barcikowski, Stephan</creatorcontrib><description>Alloy nanoparticles offer the possibility to tune functional properties of nanoscale structures. Prominent examples of tuned properties are the local surface plasmon resonance for sensing applications and adsorption energies for applications in catalysis. Laser synthesis of colloidal nanoparticles is well suited for generating alloy nanoparticles of desired compositions. Not only bulk alloys but also compacted mixtures of single-metal micropowders can serve as ablation targets. However, it is still unknown how mixing of the individual metals transfers from the micro- to the nanoscale. This work experimentally contributes to the elucidation of the mixing processes during the laser-based synthesis of alloy nanoparticles. Key parameters, such as the initial state of mixing in the ablation target, the laser pulse duration, the laser spot size, and the ablation time, are varied. Experiments are performed on a cobalt-iron alloy, relevant for application in oxidation catalysis, in ethanol. The extent of mixing in the targets after ablation and in individual nanoparticles are studied by energy-dispersive X-ray spectroscopy and by cyclic voltammetry at relevant conditions for the oxygen evolution reaction, as model reaction. The results point at the benefits of well pre-mixed ablation targets and longer laser pulse durations for the laser-based synthesis of alloy nanoparticles. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06731-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ablation ; Adsorption ; alloy nanoparticles ; Alloys ; Analysis ; Catalysis ; catalytic activity ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; Cobalt base alloys ; Crystallography and Scattering Methods ; energy-dispersive X-ray analysis ; Ethanol ; Laser ablation ; Laser applications ; Lasers ; Materials Science ; Metals &amp; Corrosion ; Nanoalloys ; Nanoparticles ; Oxidation ; Oxygen evolution reactions ; oxygen production ; Polymer Sciences ; Pulse duration ; Solid Mechanics ; Specialty metals industry ; surface plasmon resonance ; voltammetry</subject><ispartof>Journal of materials science, 2022, Vol.57 (4), p.3041-3056</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-c7008f35ca3e0b50cf1e689d2535da61d14aecb8c1d4d7547e38fe8c970d7bd33</citedby><cites>FETCH-LOGICAL-c469t-c7008f35ca3e0b50cf1e689d2535da61d14aecb8c1d4d7547e38fe8c970d7bd33</cites><orcidid>0000-0002-9739-7272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Waag, Friedrich</creatorcontrib><creatorcontrib>Fares, Wessam I. M. A.</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Andronescu, Corina</creatorcontrib><creatorcontrib>Gökce, Bilal</creatorcontrib><creatorcontrib>Barcikowski, Stephan</creatorcontrib><title>Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Alloy nanoparticles offer the possibility to tune functional properties of nanoscale structures. Prominent examples of tuned properties are the local surface plasmon resonance for sensing applications and adsorption energies for applications in catalysis. Laser synthesis of colloidal nanoparticles is well suited for generating alloy nanoparticles of desired compositions. Not only bulk alloys but also compacted mixtures of single-metal micropowders can serve as ablation targets. However, it is still unknown how mixing of the individual metals transfers from the micro- to the nanoscale. This work experimentally contributes to the elucidation of the mixing processes during the laser-based synthesis of alloy nanoparticles. Key parameters, such as the initial state of mixing in the ablation target, the laser pulse duration, the laser spot size, and the ablation time, are varied. Experiments are performed on a cobalt-iron alloy, relevant for application in oxidation catalysis, in ethanol. The extent of mixing in the targets after ablation and in individual nanoparticles are studied by energy-dispersive X-ray spectroscopy and by cyclic voltammetry at relevant conditions for the oxygen evolution reaction, as model reaction. The results point at the benefits of well pre-mixed ablation targets and longer laser pulse durations for the laser-based synthesis of alloy nanoparticles. Graphical abstract</description><subject>Ablation</subject><subject>Adsorption</subject><subject>alloy nanoparticles</subject><subject>Alloys</subject><subject>Analysis</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cobalt base alloys</subject><subject>Crystallography and Scattering Methods</subject><subject>energy-dispersive X-ray analysis</subject><subject>Ethanol</subject><subject>Laser ablation</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Metals &amp; Corrosion</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>oxygen production</subject><subject>Polymer Sciences</subject><subject>Pulse duration</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>surface plasmon resonance</subject><subject>voltammetry</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUuL1TAUx4MoeL36BVwF3OiiYx5t0y6HwceFAcHHOqTJ6TVDm1xzUpz7AfzeplMZGReSxYGT3_-8_oS85OyCM6beImddIysmeMVaJXklHpEdb5Ss6o7Jx2THmBCVqFv-lDxDvGGMNUrwHfl1cBCyH7012cdA40jzd6Cz8YHO_taHIz2laAGRlsz6hedQAnpcWTNN8UyDCfFkUvZ2AqTDmU4GIVEzTPdFbZxPxmZwpapN8RR_ukKUDnlJgM_Jk9FMCC_-xD359v7d16uP1fWnD4ery-vK1m2fK6sY60bZWCOBDQ2zI4e2651oZONMyx2vDdihs9zVTjW1AtmN0NleMacGJ-WevN7qlp1-LIBZzx4tTJMJEBfUopVtzZu-VgV99Q96E5cUynSFEryXbL34nlxs1NFMoH0YY07Glueg7BkDjL7kL9ueCyZ5uwrePBAUJsNtPpoFUR--fH7Iio0tB0NMMOpT8rNJZ82ZXm3Xm-262K7vbNeiiOQmwgKHI6S_c_9H9Rvsi7FW</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Waag, Friedrich</creator><creator>Fares, Wessam I. M. A.</creator><creator>Li, Yao</creator><creator>Andronescu, Corina</creator><creator>Gökce, Bilal</creator><creator>Barcikowski, Stephan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9739-7272</orcidid></search><sort><creationdate>2022</creationdate><title>Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures</title><author>Waag, Friedrich ; Fares, Wessam I. M. A. ; Li, Yao ; Andronescu, Corina ; Gökce, Bilal ; Barcikowski, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-c7008f35ca3e0b50cf1e689d2535da61d14aecb8c1d4d7547e38fe8c970d7bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Adsorption</topic><topic>alloy nanoparticles</topic><topic>Alloys</topic><topic>Analysis</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cobalt base alloys</topic><topic>Crystallography and Scattering Methods</topic><topic>energy-dispersive X-ray analysis</topic><topic>Ethanol</topic><topic>Laser ablation</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Metals &amp; Corrosion</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>oxygen production</topic><topic>Polymer Sciences</topic><topic>Pulse duration</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>surface plasmon resonance</topic><topic>voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waag, Friedrich</creatorcontrib><creatorcontrib>Fares, Wessam I. M. A.</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Andronescu, Corina</creatorcontrib><creatorcontrib>Gökce, Bilal</creatorcontrib><creatorcontrib>Barcikowski, Stephan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waag, Friedrich</au><au>Fares, Wessam I. M. A.</au><au>Li, Yao</au><au>Andronescu, Corina</au><au>Gökce, Bilal</au><au>Barcikowski, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022</date><risdate>2022</risdate><volume>57</volume><issue>4</issue><spage>3041</spage><epage>3056</epage><pages>3041-3056</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Alloy nanoparticles offer the possibility to tune functional properties of nanoscale structures. Prominent examples of tuned properties are the local surface plasmon resonance for sensing applications and adsorption energies for applications in catalysis. Laser synthesis of colloidal nanoparticles is well suited for generating alloy nanoparticles of desired compositions. Not only bulk alloys but also compacted mixtures of single-metal micropowders can serve as ablation targets. However, it is still unknown how mixing of the individual metals transfers from the micro- to the nanoscale. This work experimentally contributes to the elucidation of the mixing processes during the laser-based synthesis of alloy nanoparticles. Key parameters, such as the initial state of mixing in the ablation target, the laser pulse duration, the laser spot size, and the ablation time, are varied. Experiments are performed on a cobalt-iron alloy, relevant for application in oxidation catalysis, in ethanol. The extent of mixing in the targets after ablation and in individual nanoparticles are studied by energy-dispersive X-ray spectroscopy and by cyclic voltammetry at relevant conditions for the oxygen evolution reaction, as model reaction. The results point at the benefits of well pre-mixed ablation targets and longer laser pulse durations for the laser-based synthesis of alloy nanoparticles. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06731-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9739-7272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022, Vol.57 (4), p.3041-3056
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2621930085
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Ablation
Adsorption
alloy nanoparticles
Alloys
Analysis
Catalysis
catalytic activity
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry and Materials Science
Classical Mechanics
Cobalt base alloys
Crystallography and Scattering Methods
energy-dispersive X-ray analysis
Ethanol
Laser ablation
Laser applications
Lasers
Materials Science
Metals & Corrosion
Nanoalloys
Nanoparticles
Oxidation
Oxygen evolution reactions
oxygen production
Polymer Sciences
Pulse duration
Solid Mechanics
Specialty metals industry
surface plasmon resonance
voltammetry
title Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20main%20mixing%20process%20in%20the%20synthesis%20of%20alloy%20nanoparticles%20by%20laser%20ablation%20of%20compacted%20micropowder%20mixtures&rft.jtitle=Journal%20of%20materials%20science&rft.au=Waag,%20Friedrich&rft.date=2022&rft.volume=57&rft.issue=4&rft.spage=3041&rft.epage=3056&rft.pages=3041-3056&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06731-2&rft_dat=%3Cgale_proqu%3EA691203165%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-c7008f35ca3e0b50cf1e689d2535da61d14aecb8c1d4d7547e38fe8c970d7bd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621930085&rft_id=info:pmid/&rft_galeid=A691203165&rfr_iscdi=true