Loading…
The 30 October 2020, MW = 7.0, Samos earthquake: aftershock relocation, slip model, Coulomb stress evolution and estimation of shaking
We study the major M W = 7.0, 30 October 2020, Samos earthquake and its aftershocks, by calculating improved locations using differential travel times and waveform cross-correlations. We image the rupture of the mainshock using local strong motion data, and we examine the Coulomb stress evolution pr...
Saved in:
Published in: | Bulletin of earthquake engineering 2022, Vol.20 (2), p.819-851 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2784-d206c944113e7cf8e2a2ee12b01ef6ca26d5489dbd2131572a1a6e6531b4a22e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2784-d206c944113e7cf8e2a2ee12b01ef6ca26d5489dbd2131572a1a6e6531b4a22e3 |
container_end_page | 851 |
container_issue | 2 |
container_start_page | 819 |
container_title | Bulletin of earthquake engineering |
container_volume | 20 |
creator | Lentas, Konstantinos Gkarlaouni, Charikleia G. Kalligeris, Nikos Melis, Nikolaos S. |
description | We study the major
M
W
= 7.0, 30 October 2020, Samos earthquake and its aftershocks, by calculating improved locations using differential travel times and waveform cross-correlations. We image the rupture of the mainshock using local strong motion data, and we examine the Coulomb stress evolution prior to the mainshock, as well as the coseismic stress changes. Lastly, we estimate the produced shaking using all the available information from strong motion data and testimonies. Earthquake relocations reveal the activation of the E-W oriented Kaystrios fault, in the North basin of Samos with a possible extension to the West. The kinematic rupture inversion suggests non-uniform bilateral rupture on a ∼60 km × ∼20 km fault area, with the main rupture propagating towards the West and maximum slip up to approximately 2.5 m. Improved locations of the aftershock sequence are anti-correlated with areas of maximum slip on the fault surface. Similarly, the Coulomb stress change calculations show that only off-fault earthquake clusters are located within lobes of increasing positive static stress changes. This observation is consistent with assuming a fault area of either uniform slip, or variable slip according to the obtained slip model. Both scenarios indicate typical stress patterns for a normal fault with E-W orientation, with stress lobes of positive ∆CFF increments expanding in E-W orientation. In the case of the variable slip model, both negative and positive stress changes show slightly larger values compared to the uniform slip model. Finally, Modified Mercalli Intensities based on the fault model obtained in this study indicate maximum intensity (VII +) along the northern coast of Samos Ιsland. Spectral acceleration values at 0.3 s period also demonstrate the damaging situation at Izmir. |
doi_str_mv | 10.1007/s10518-021-01260-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622380191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622380191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2784-d206c944113e7cf8e2a2ee12b01ef6ca26d5489dbd2131572a1a6e6531b4a22e3</originalsourceid><addsrcrecordid>eNp9kM1Ow0AMhCMEEr8vwMkS1wZsJ9mkSBxQxZ8E4gAIbqtN4tDSNFt2EyRegOdmaZG4cfIc5hvbE0WHhMeEmJ94woyKGJliJFYYpxvRDmV5ElOaqc2VxjhX9LId7Xr_hshZPsad6OtxKpAg3Fe9LcUBI-MI7p7hDPLjoB7MwnoQ4_rp-2Dmcgqm6cX5qa3m4KS1lelnthuBb2dLWNha2hFM7NDaRQm-d-ID_WHb4ccFpqtBfD9brCCwDfipmc-61_1oqzGtl4PfuRc9XV48Tq7j2_urm8n5bVxxXqRxzaiqcZoSJZJXTSFsWIS4RJJGVYZVnaXFuC5rpiS8zIaMEpUlVKaGWZK96Gidu3T2fQin6Dc7uC6s1KyYkwJpTMHFa1flrPdOGr104Wb3qQn1T9963bcOfetV3zoNULKGfDB3r-L-ov-hvgHZKoFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622380191</pqid></control><display><type>article</type><title>The 30 October 2020, MW = 7.0, Samos earthquake: aftershock relocation, slip model, Coulomb stress evolution and estimation of shaking</title><source>Springer Link</source><creator>Lentas, Konstantinos ; Gkarlaouni, Charikleia G. ; Kalligeris, Nikos ; Melis, Nikolaos S.</creator><creatorcontrib>Lentas, Konstantinos ; Gkarlaouni, Charikleia G. ; Kalligeris, Nikos ; Melis, Nikolaos S.</creatorcontrib><description>We study the major
M
W
= 7.0, 30 October 2020, Samos earthquake and its aftershocks, by calculating improved locations using differential travel times and waveform cross-correlations. We image the rupture of the mainshock using local strong motion data, and we examine the Coulomb stress evolution prior to the mainshock, as well as the coseismic stress changes. Lastly, we estimate the produced shaking using all the available information from strong motion data and testimonies. Earthquake relocations reveal the activation of the E-W oriented Kaystrios fault, in the North basin of Samos with a possible extension to the West. The kinematic rupture inversion suggests non-uniform bilateral rupture on a ∼60 km × ∼20 km fault area, with the main rupture propagating towards the West and maximum slip up to approximately 2.5 m. Improved locations of the aftershock sequence are anti-correlated with areas of maximum slip on the fault surface. Similarly, the Coulomb stress change calculations show that only off-fault earthquake clusters are located within lobes of increasing positive static stress changes. This observation is consistent with assuming a fault area of either uniform slip, or variable slip according to the obtained slip model. Both scenarios indicate typical stress patterns for a normal fault with E-W orientation, with stress lobes of positive ∆CFF increments expanding in E-W orientation. In the case of the variable slip model, both negative and positive stress changes show slightly larger values compared to the uniform slip model. Finally, Modified Mercalli Intensities based on the fault model obtained in this study indicate maximum intensity (VII +) along the northern coast of Samos Ιsland. Spectral acceleration values at 0.3 s period also demonstrate the damaging situation at Izmir.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-021-01260-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aftershocks ; Civil Engineering ; Cross correlation ; Earth and Environmental Science ; Earth Sciences ; Earthquake damage ; Earthquakes ; Environmental Engineering/Biotechnology ; Evolution ; Fault lines ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Lobes ; Modelling ; Original Article ; Relocation ; Rupture ; Rupturing ; Seismic activity ; Shaking ; Slip ; Stress ; Structural Geology ; Travel time ; Waveforms</subject><ispartof>Bulletin of earthquake engineering, 2022, Vol.20 (2), p.819-851</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2784-d206c944113e7cf8e2a2ee12b01ef6ca26d5489dbd2131572a1a6e6531b4a22e3</citedby><cites>FETCH-LOGICAL-c2784-d206c944113e7cf8e2a2ee12b01ef6ca26d5489dbd2131572a1a6e6531b4a22e3</cites><orcidid>0000-0001-5198-2073 ; 0000-0003-1713-5377 ; 0000-0002-8966-4449 ; 0000-0003-2326-7042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lentas, Konstantinos</creatorcontrib><creatorcontrib>Gkarlaouni, Charikleia G.</creatorcontrib><creatorcontrib>Kalligeris, Nikos</creatorcontrib><creatorcontrib>Melis, Nikolaos S.</creatorcontrib><title>The 30 October 2020, MW = 7.0, Samos earthquake: aftershock relocation, slip model, Coulomb stress evolution and estimation of shaking</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>We study the major
M
W
= 7.0, 30 October 2020, Samos earthquake and its aftershocks, by calculating improved locations using differential travel times and waveform cross-correlations. We image the rupture of the mainshock using local strong motion data, and we examine the Coulomb stress evolution prior to the mainshock, as well as the coseismic stress changes. Lastly, we estimate the produced shaking using all the available information from strong motion data and testimonies. Earthquake relocations reveal the activation of the E-W oriented Kaystrios fault, in the North basin of Samos with a possible extension to the West. The kinematic rupture inversion suggests non-uniform bilateral rupture on a ∼60 km × ∼20 km fault area, with the main rupture propagating towards the West and maximum slip up to approximately 2.5 m. Improved locations of the aftershock sequence are anti-correlated with areas of maximum slip on the fault surface. Similarly, the Coulomb stress change calculations show that only off-fault earthquake clusters are located within lobes of increasing positive static stress changes. This observation is consistent with assuming a fault area of either uniform slip, or variable slip according to the obtained slip model. Both scenarios indicate typical stress patterns for a normal fault with E-W orientation, with stress lobes of positive ∆CFF increments expanding in E-W orientation. In the case of the variable slip model, both negative and positive stress changes show slightly larger values compared to the uniform slip model. Finally, Modified Mercalli Intensities based on the fault model obtained in this study indicate maximum intensity (VII +) along the northern coast of Samos Ιsland. Spectral acceleration values at 0.3 s period also demonstrate the damaging situation at Izmir.</description><subject>Aftershocks</subject><subject>Civil Engineering</subject><subject>Cross correlation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquake damage</subject><subject>Earthquakes</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Evolution</subject><subject>Fault lines</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Lobes</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Relocation</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Seismic activity</subject><subject>Shaking</subject><subject>Slip</subject><subject>Stress</subject><subject>Structural Geology</subject><subject>Travel time</subject><subject>Waveforms</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Ow0AMhCMEEr8vwMkS1wZsJ9mkSBxQxZ8E4gAIbqtN4tDSNFt2EyRegOdmaZG4cfIc5hvbE0WHhMeEmJ94woyKGJliJFYYpxvRDmV5ElOaqc2VxjhX9LId7Xr_hshZPsad6OtxKpAg3Fe9LcUBI-MI7p7hDPLjoB7MwnoQ4_rp-2Dmcgqm6cX5qa3m4KS1lelnthuBb2dLWNha2hFM7NDaRQm-d-ID_WHb4ccFpqtBfD9brCCwDfipmc-61_1oqzGtl4PfuRc9XV48Tq7j2_urm8n5bVxxXqRxzaiqcZoSJZJXTSFsWIS4RJJGVYZVnaXFuC5rpiS8zIaMEpUlVKaGWZK96Gidu3T2fQin6Dc7uC6s1KyYkwJpTMHFa1flrPdOGr104Wb3qQn1T9963bcOfetV3zoNULKGfDB3r-L-ov-hvgHZKoFo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lentas, Konstantinos</creator><creator>Gkarlaouni, Charikleia G.</creator><creator>Kalligeris, Nikos</creator><creator>Melis, Nikolaos S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5198-2073</orcidid><orcidid>https://orcid.org/0000-0003-1713-5377</orcidid><orcidid>https://orcid.org/0000-0002-8966-4449</orcidid><orcidid>https://orcid.org/0000-0003-2326-7042</orcidid></search><sort><creationdate>2022</creationdate><title>The 30 October 2020, MW = 7.0, Samos earthquake: aftershock relocation, slip model, Coulomb stress evolution and estimation of shaking</title><author>Lentas, Konstantinos ; Gkarlaouni, Charikleia G. ; Kalligeris, Nikos ; Melis, Nikolaos S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2784-d206c944113e7cf8e2a2ee12b01ef6ca26d5489dbd2131572a1a6e6531b4a22e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aftershocks</topic><topic>Civil Engineering</topic><topic>Cross correlation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquake damage</topic><topic>Earthquakes</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Evolution</topic><topic>Fault lines</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Lobes</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Relocation</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Seismic activity</topic><topic>Shaking</topic><topic>Slip</topic><topic>Stress</topic><topic>Structural Geology</topic><topic>Travel time</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lentas, Konstantinos</creatorcontrib><creatorcontrib>Gkarlaouni, Charikleia G.</creatorcontrib><creatorcontrib>Kalligeris, Nikos</creatorcontrib><creatorcontrib>Melis, Nikolaos S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lentas, Konstantinos</au><au>Gkarlaouni, Charikleia G.</au><au>Kalligeris, Nikos</au><au>Melis, Nikolaos S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 30 October 2020, MW = 7.0, Samos earthquake: aftershock relocation, slip model, Coulomb stress evolution and estimation of shaking</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2022</date><risdate>2022</risdate><volume>20</volume><issue>2</issue><spage>819</spage><epage>851</epage><pages>819-851</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>We study the major
M
W
= 7.0, 30 October 2020, Samos earthquake and its aftershocks, by calculating improved locations using differential travel times and waveform cross-correlations. We image the rupture of the mainshock using local strong motion data, and we examine the Coulomb stress evolution prior to the mainshock, as well as the coseismic stress changes. Lastly, we estimate the produced shaking using all the available information from strong motion data and testimonies. Earthquake relocations reveal the activation of the E-W oriented Kaystrios fault, in the North basin of Samos with a possible extension to the West. The kinematic rupture inversion suggests non-uniform bilateral rupture on a ∼60 km × ∼20 km fault area, with the main rupture propagating towards the West and maximum slip up to approximately 2.5 m. Improved locations of the aftershock sequence are anti-correlated with areas of maximum slip on the fault surface. Similarly, the Coulomb stress change calculations show that only off-fault earthquake clusters are located within lobes of increasing positive static stress changes. This observation is consistent with assuming a fault area of either uniform slip, or variable slip according to the obtained slip model. Both scenarios indicate typical stress patterns for a normal fault with E-W orientation, with stress lobes of positive ∆CFF increments expanding in E-W orientation. In the case of the variable slip model, both negative and positive stress changes show slightly larger values compared to the uniform slip model. Finally, Modified Mercalli Intensities based on the fault model obtained in this study indicate maximum intensity (VII +) along the northern coast of Samos Ιsland. Spectral acceleration values at 0.3 s period also demonstrate the damaging situation at Izmir.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-021-01260-4</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-5198-2073</orcidid><orcidid>https://orcid.org/0000-0003-1713-5377</orcidid><orcidid>https://orcid.org/0000-0002-8966-4449</orcidid><orcidid>https://orcid.org/0000-0003-2326-7042</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-761X |
ispartof | Bulletin of earthquake engineering, 2022, Vol.20 (2), p.819-851 |
issn | 1570-761X 1573-1456 |
language | eng |
recordid | cdi_proquest_journals_2622380191 |
source | Springer Link |
subjects | Aftershocks Civil Engineering Cross correlation Earth and Environmental Science Earth Sciences Earthquake damage Earthquakes Environmental Engineering/Biotechnology Evolution Fault lines Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Lobes Modelling Original Article Relocation Rupture Rupturing Seismic activity Shaking Slip Stress Structural Geology Travel time Waveforms |
title | The 30 October 2020, MW = 7.0, Samos earthquake: aftershock relocation, slip model, Coulomb stress evolution and estimation of shaking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%2030%20October%202020,%20MW%20=%207.0,%20Samos%20earthquake:%20aftershock%20relocation,%20slip%20model,%20Coulomb%20stress%20evolution%20and%20estimation%20of%20shaking&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Lentas,%20Konstantinos&rft.date=2022&rft.volume=20&rft.issue=2&rft.spage=819&rft.epage=851&rft.pages=819-851&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-021-01260-4&rft_dat=%3Cproquest_cross%3E2622380191%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2784-d206c944113e7cf8e2a2ee12b01ef6ca26d5489dbd2131572a1a6e6531b4a22e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622380191&rft_id=info:pmid/&rfr_iscdi=true |