Loading…
Evolution under domestication of correlated characters in populations of Stenocereus stellatus (Pfeiff.) Riccob., under different forms of management in central Mexico: genetic diversity, damage, and defense mechanisms
Across the process of domestication, human selection produces changes in target attributes as well as changes that are not necessarily desired by humans due to pleiotropic or linked genes. In this paper we addressed, correlated changes between genetic diversity, damage level, defense mechanisms (res...
Saved in:
Published in: | Genetic resources and crop evolution 2022-02, Vol.69 (2), p.601-618 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Across the process of domestication, human selection produces changes in target attributes as well as changes that are not necessarily desired by humans due to pleiotropic or linked genes. In this paper we addressed, correlated changes between genetic diversity, damage level, defense mechanisms (resistance and tolerance), and fitness due to the domestication process of
Stenocereus pruinosus
(Otto ex Pfeiff.)
Buxbaum and Stenocereus stellatus
(Pfeiff.) Riccobono, an endemic columnar cactus of south-central Mexico. One hundred eighty individuals of
S. stellatus
from wild, in situ managed, and cultivated populations of Valle de Tehuacán and Mixteca Baja, Puebla, were sampled, and attributes including damage level, defense mechanisms and fitness (number of fruits) were measured. The DNA of 176 individuals was extracted to amplify and analyze five microsatellites in order to estimate genetic diversity and structure. As expected, cultivated populations showed a significantly higher damage level, as well as lower resistance and genetic diversity. Depending on the form of management, correlations between genetic diversity and the rest of the attributes exhibited different patterns. In wild populations, genetic diversity was positively correlated with damage and negatively with resistance; in situ managed populations exhibited the opposite pattern, and in cultivated populations, no correlations were found between these attributes. We propose a hypothetic model of human selection to explain the variation in these correlations. No differences in genetic diversity and tolerance were detected between regions; however, the populations of Valle de Tehuacán exhibited more damage and more resistance. In both regions, populations showed a positive correlation between fitness and resistance and a negative correlation between damage and resistance, suggesting the existence of a defense mechanism to ensure fitness. Also, non-regional differentiation suggests an eventual gene flow due to pollinators, human movement of branches, or a common ancestry before the domestication process. |
---|---|
ISSN: | 0925-9864 1573-5109 |
DOI: | 10.1007/s10722-021-01245-x |