Loading…

Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices

This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable ce...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-01, Vol.32 (5), p.n/a
Main Authors: Yu, Wei, Deschaume, Olivier, Dedroog, Lens, Garcia Abrego, Christian Jose, Zhang, Pengfei, Wellens, Jolan, de Coene, Yovan, Jooken, Stijn, Clays, Koen, Thielemans, Wim, Glorieux, Christ, Bartic, Carmen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773
cites cdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced functional materials
container_volume 32
creator Yu, Wei
Deschaume, Olivier
Dedroog, Lens
Garcia Abrego, Christian Jose
Zhang, Pengfei
Wellens, Jolan
de Coene, Yovan
Jooken, Stijn
Clays, Koen
Thielemans, Wim
Glorieux, Christ
Bartic, Carmen
description This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology. A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering.
doi_str_mv 10.1002/adfm.202108234
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622492677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622492677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhhdRsFavngOeW5Nsmu0el1ZtoVXBCt6WJDtbU7KbmmQpBQ8-gs_ok7i1Uo-eZhi-f4b5ouiS4D7BmF6Loqz6FFOChzRmR1GHcMJ7MabD40NPXk6jM-9XGJMkiVknep_p5Wv4-vjMisKB90IaQPeitspWa-t1ADTZFs4uwXiUGWM36NEIX9laK5Sp0IigbY1EXaBpjZ50aNACqjU4ERoHaN5ywTpdL5GuUTxGIzAGzUVwWoE_j05KYTxc_NZu9Hx7sxhNerOHu-kom_VUPEhYT0khZckSLDiJgUtFGWExA0UGqZSQFKKUvGz_4TIBppjCPKUDMgBIh8Vu3o2u9nvXzr414EO-so2r25M55ZSylPIfqr-nlLPeOyjztdOVcNuc4HxnON8Zzg-G20C6D2y0ge0_dJ6Nb-d_2W_V4IJx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622492677</pqid></control><display><type>article</type><title>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yu, Wei ; Deschaume, Olivier ; Dedroog, Lens ; Garcia Abrego, Christian Jose ; Zhang, Pengfei ; Wellens, Jolan ; de Coene, Yovan ; Jooken, Stijn ; Clays, Koen ; Thielemans, Wim ; Glorieux, Christ ; Bartic, Carmen</creator><creatorcontrib>Yu, Wei ; Deschaume, Olivier ; Dedroog, Lens ; Garcia Abrego, Christian Jose ; Zhang, Pengfei ; Wellens, Jolan ; de Coene, Yovan ; Jooken, Stijn ; Clays, Koen ; Thielemans, Wim ; Glorieux, Christ ; Bartic, Carmen</creatorcontrib><description>This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology. A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202108234</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Composite materials ; Deformation ; Fluorescence ; Formability ; Hydrogels ; in situ cell deformation ; Infrared lasers ; localized 3D temperature measurement, optical cell actuation ; Materials science ; Monitoring ; Nanocomposites ; Nanoparticles ; Nanorods ; plasmonic nanoparticles ; Plasmonics ; poly(ethylene glycol) hydrogels ; Polyethylene glycol ; Rhodamine ; Silicon dioxide ; Temperature sensors</subject><ispartof>Advanced functional materials, 2022-01, Vol.32 (5), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</citedby><cites>FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</cites><orcidid>0000-0001-9577-2844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Deschaume, Olivier</creatorcontrib><creatorcontrib>Dedroog, Lens</creatorcontrib><creatorcontrib>Garcia Abrego, Christian Jose</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Wellens, Jolan</creatorcontrib><creatorcontrib>de Coene, Yovan</creatorcontrib><creatorcontrib>Jooken, Stijn</creatorcontrib><creatorcontrib>Clays, Koen</creatorcontrib><creatorcontrib>Thielemans, Wim</creatorcontrib><creatorcontrib>Glorieux, Christ</creatorcontrib><creatorcontrib>Bartic, Carmen</creatorcontrib><title>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</title><title>Advanced functional materials</title><description>This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology. A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering.</description><subject>Actuation</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Fluorescence</subject><subject>Formability</subject><subject>Hydrogels</subject><subject>in situ cell deformation</subject><subject>Infrared lasers</subject><subject>localized 3D temperature measurement, optical cell actuation</subject><subject>Materials science</subject><subject>Monitoring</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>plasmonic nanoparticles</subject><subject>Plasmonics</subject><subject>poly(ethylene glycol) hydrogels</subject><subject>Polyethylene glycol</subject><subject>Rhodamine</subject><subject>Silicon dioxide</subject><subject>Temperature sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFKAzEQhhdRsFavngOeW5Nsmu0el1ZtoVXBCt6WJDtbU7KbmmQpBQ8-gs_ok7i1Uo-eZhi-f4b5ouiS4D7BmF6Loqz6FFOChzRmR1GHcMJ7MabD40NPXk6jM-9XGJMkiVknep_p5Wv4-vjMisKB90IaQPeitspWa-t1ADTZFs4uwXiUGWM36NEIX9laK5Sp0IigbY1EXaBpjZ50aNACqjU4ERoHaN5ywTpdL5GuUTxGIzAGzUVwWoE_j05KYTxc_NZu9Hx7sxhNerOHu-kom_VUPEhYT0khZckSLDiJgUtFGWExA0UGqZSQFKKUvGz_4TIBppjCPKUDMgBIh8Vu3o2u9nvXzr414EO-so2r25M55ZSylPIfqr-nlLPeOyjztdOVcNuc4HxnON8Zzg-G20C6D2y0ge0_dJ6Nb-d_2W_V4IJx</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yu, Wei</creator><creator>Deschaume, Olivier</creator><creator>Dedroog, Lens</creator><creator>Garcia Abrego, Christian Jose</creator><creator>Zhang, Pengfei</creator><creator>Wellens, Jolan</creator><creator>de Coene, Yovan</creator><creator>Jooken, Stijn</creator><creator>Clays, Koen</creator><creator>Thielemans, Wim</creator><creator>Glorieux, Christ</creator><creator>Bartic, Carmen</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9577-2844</orcidid></search><sort><creationdate>20220101</creationdate><title>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</title><author>Yu, Wei ; Deschaume, Olivier ; Dedroog, Lens ; Garcia Abrego, Christian Jose ; Zhang, Pengfei ; Wellens, Jolan ; de Coene, Yovan ; Jooken, Stijn ; Clays, Koen ; Thielemans, Wim ; Glorieux, Christ ; Bartic, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Fluorescence</topic><topic>Formability</topic><topic>Hydrogels</topic><topic>in situ cell deformation</topic><topic>Infrared lasers</topic><topic>localized 3D temperature measurement, optical cell actuation</topic><topic>Materials science</topic><topic>Monitoring</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>plasmonic nanoparticles</topic><topic>Plasmonics</topic><topic>poly(ethylene glycol) hydrogels</topic><topic>Polyethylene glycol</topic><topic>Rhodamine</topic><topic>Silicon dioxide</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Deschaume, Olivier</creatorcontrib><creatorcontrib>Dedroog, Lens</creatorcontrib><creatorcontrib>Garcia Abrego, Christian Jose</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Wellens, Jolan</creatorcontrib><creatorcontrib>de Coene, Yovan</creatorcontrib><creatorcontrib>Jooken, Stijn</creatorcontrib><creatorcontrib>Clays, Koen</creatorcontrib><creatorcontrib>Thielemans, Wim</creatorcontrib><creatorcontrib>Glorieux, Christ</creatorcontrib><creatorcontrib>Bartic, Carmen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wei</au><au>Deschaume, Olivier</au><au>Dedroog, Lens</au><au>Garcia Abrego, Christian Jose</au><au>Zhang, Pengfei</au><au>Wellens, Jolan</au><au>de Coene, Yovan</au><au>Jooken, Stijn</au><au>Clays, Koen</au><au>Thielemans, Wim</au><au>Glorieux, Christ</au><au>Bartic, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</atitle><jtitle>Advanced functional materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology. A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202108234</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9577-2844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-01, Vol.32 (5), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2622492677
source Wiley-Blackwell Read & Publish Collection
subjects Actuation
Composite materials
Deformation
Fluorescence
Formability
Hydrogels
in situ cell deformation
Infrared lasers
localized 3D temperature measurement, optical cell actuation
Materials science
Monitoring
Nanocomposites
Nanoparticles
Nanorods
plasmonic nanoparticles
Plasmonics
poly(ethylene glycol) hydrogels
Polyethylene glycol
Rhodamine
Silicon dioxide
Temperature sensors
title Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%E2%80%90Addressable%20Nanocomposite%20Hydrogels%20Allow%20Plasmonic%20Actuation%20and%20In%20Situ%20Temperature%20Monitoring%20in%203D%20Cell%20Matrices&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Wei&rft.date=2022-01-01&rft.volume=32&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202108234&rft_dat=%3Cproquest_cross%3E2622492677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622492677&rft_id=info:pmid/&rfr_iscdi=true