Loading…
Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices
This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable ce...
Saved in:
Published in: | Advanced functional materials 2022-01, Vol.32 (5), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773 |
---|---|
cites | cdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Yu, Wei Deschaume, Olivier Dedroog, Lens Garcia Abrego, Christian Jose Zhang, Pengfei Wellens, Jolan de Coene, Yovan Jooken, Stijn Clays, Koen Thielemans, Wim Glorieux, Christ Bartic, Carmen |
description | This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology.
A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering. |
doi_str_mv | 10.1002/adfm.202108234 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622492677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622492677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhhdRsFavngOeW5Nsmu0el1ZtoVXBCt6WJDtbU7KbmmQpBQ8-gs_ok7i1Uo-eZhi-f4b5ouiS4D7BmF6Loqz6FFOChzRmR1GHcMJ7MabD40NPXk6jM-9XGJMkiVknep_p5Wv4-vjMisKB90IaQPeitspWa-t1ADTZFs4uwXiUGWM36NEIX9laK5Sp0IigbY1EXaBpjZ50aNACqjU4ERoHaN5ywTpdL5GuUTxGIzAGzUVwWoE_j05KYTxc_NZu9Hx7sxhNerOHu-kom_VUPEhYT0khZckSLDiJgUtFGWExA0UGqZSQFKKUvGz_4TIBppjCPKUDMgBIh8Vu3o2u9nvXzr414EO-so2r25M55ZSylPIfqr-nlLPeOyjztdOVcNuc4HxnON8Zzg-G20C6D2y0ge0_dJ6Nb-d_2W_V4IJx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622492677</pqid></control><display><type>article</type><title>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yu, Wei ; Deschaume, Olivier ; Dedroog, Lens ; Garcia Abrego, Christian Jose ; Zhang, Pengfei ; Wellens, Jolan ; de Coene, Yovan ; Jooken, Stijn ; Clays, Koen ; Thielemans, Wim ; Glorieux, Christ ; Bartic, Carmen</creator><creatorcontrib>Yu, Wei ; Deschaume, Olivier ; Dedroog, Lens ; Garcia Abrego, Christian Jose ; Zhang, Pengfei ; Wellens, Jolan ; de Coene, Yovan ; Jooken, Stijn ; Clays, Koen ; Thielemans, Wim ; Glorieux, Christ ; Bartic, Carmen</creatorcontrib><description>This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology.
A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202108234</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Composite materials ; Deformation ; Fluorescence ; Formability ; Hydrogels ; in situ cell deformation ; Infrared lasers ; localized 3D temperature measurement, optical cell actuation ; Materials science ; Monitoring ; Nanocomposites ; Nanoparticles ; Nanorods ; plasmonic nanoparticles ; Plasmonics ; poly(ethylene glycol) hydrogels ; Polyethylene glycol ; Rhodamine ; Silicon dioxide ; Temperature sensors</subject><ispartof>Advanced functional materials, 2022-01, Vol.32 (5), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</citedby><cites>FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</cites><orcidid>0000-0001-9577-2844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Deschaume, Olivier</creatorcontrib><creatorcontrib>Dedroog, Lens</creatorcontrib><creatorcontrib>Garcia Abrego, Christian Jose</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Wellens, Jolan</creatorcontrib><creatorcontrib>de Coene, Yovan</creatorcontrib><creatorcontrib>Jooken, Stijn</creatorcontrib><creatorcontrib>Clays, Koen</creatorcontrib><creatorcontrib>Thielemans, Wim</creatorcontrib><creatorcontrib>Glorieux, Christ</creatorcontrib><creatorcontrib>Bartic, Carmen</creatorcontrib><title>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</title><title>Advanced functional materials</title><description>This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology.
A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering.</description><subject>Actuation</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Fluorescence</subject><subject>Formability</subject><subject>Hydrogels</subject><subject>in situ cell deformation</subject><subject>Infrared lasers</subject><subject>localized 3D temperature measurement, optical cell actuation</subject><subject>Materials science</subject><subject>Monitoring</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>plasmonic nanoparticles</subject><subject>Plasmonics</subject><subject>poly(ethylene glycol) hydrogels</subject><subject>Polyethylene glycol</subject><subject>Rhodamine</subject><subject>Silicon dioxide</subject><subject>Temperature sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFKAzEQhhdRsFavngOeW5Nsmu0el1ZtoVXBCt6WJDtbU7KbmmQpBQ8-gs_ok7i1Uo-eZhi-f4b5ouiS4D7BmF6Loqz6FFOChzRmR1GHcMJ7MabD40NPXk6jM-9XGJMkiVknep_p5Wv4-vjMisKB90IaQPeitspWa-t1ADTZFs4uwXiUGWM36NEIX9laK5Sp0IigbY1EXaBpjZ50aNACqjU4ERoHaN5ywTpdL5GuUTxGIzAGzUVwWoE_j05KYTxc_NZu9Hx7sxhNerOHu-kom_VUPEhYT0khZckSLDiJgUtFGWExA0UGqZSQFKKUvGz_4TIBppjCPKUDMgBIh8Vu3o2u9nvXzr414EO-so2r25M55ZSylPIfqr-nlLPeOyjztdOVcNuc4HxnON8Zzg-G20C6D2y0ge0_dJ6Nb-d_2W_V4IJx</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yu, Wei</creator><creator>Deschaume, Olivier</creator><creator>Dedroog, Lens</creator><creator>Garcia Abrego, Christian Jose</creator><creator>Zhang, Pengfei</creator><creator>Wellens, Jolan</creator><creator>de Coene, Yovan</creator><creator>Jooken, Stijn</creator><creator>Clays, Koen</creator><creator>Thielemans, Wim</creator><creator>Glorieux, Christ</creator><creator>Bartic, Carmen</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9577-2844</orcidid></search><sort><creationdate>20220101</creationdate><title>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</title><author>Yu, Wei ; Deschaume, Olivier ; Dedroog, Lens ; Garcia Abrego, Christian Jose ; Zhang, Pengfei ; Wellens, Jolan ; de Coene, Yovan ; Jooken, Stijn ; Clays, Koen ; Thielemans, Wim ; Glorieux, Christ ; Bartic, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Fluorescence</topic><topic>Formability</topic><topic>Hydrogels</topic><topic>in situ cell deformation</topic><topic>Infrared lasers</topic><topic>localized 3D temperature measurement, optical cell actuation</topic><topic>Materials science</topic><topic>Monitoring</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>plasmonic nanoparticles</topic><topic>Plasmonics</topic><topic>poly(ethylene glycol) hydrogels</topic><topic>Polyethylene glycol</topic><topic>Rhodamine</topic><topic>Silicon dioxide</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Deschaume, Olivier</creatorcontrib><creatorcontrib>Dedroog, Lens</creatorcontrib><creatorcontrib>Garcia Abrego, Christian Jose</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Wellens, Jolan</creatorcontrib><creatorcontrib>de Coene, Yovan</creatorcontrib><creatorcontrib>Jooken, Stijn</creatorcontrib><creatorcontrib>Clays, Koen</creatorcontrib><creatorcontrib>Thielemans, Wim</creatorcontrib><creatorcontrib>Glorieux, Christ</creatorcontrib><creatorcontrib>Bartic, Carmen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wei</au><au>Deschaume, Olivier</au><au>Dedroog, Lens</au><au>Garcia Abrego, Christian Jose</au><au>Zhang, Pengfei</au><au>Wellens, Jolan</au><au>de Coene, Yovan</au><au>Jooken, Stijn</au><au>Clays, Koen</au><au>Thielemans, Wim</au><au>Glorieux, Christ</au><au>Bartic, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices</atitle><jtitle>Advanced functional materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>This paper reports a multifunctional platform based on a nanocomposite hydrogel combining poly(ethylene glycol), with rhodamine B‐containing silica nanoparticles (RhB@SiO2), as temperature sensors, and gold nanorods (AuNRs) as plasmonic heaters. This composite material acts as a light‐addressable cellular matrix able to induce 3D temperature gradients locally and dynamically using the localized surface plasmon resonance (LSPR) of AuNRs under near‐infrared (NIR) laser illumination. At the same time, the temperature changes are probed locally by monitoring changes of the RhB@SiO2 NPs fluorescence. As a result of plasmonic heating, and, depending on the preparation protocol, the light‐addressable hydrogel also deforms controllably and reversibly, allowing mechanical and thermal cellular stimulation in a 3D matrix. The hydrogel deformation is quantified by means of inline holographic microscopy. This approach makes it possible to accurately and locally control and simultaneously measure temperature gradients and deformation in soft, 3D deformable materials and will enable novel platforms for studying cellular thermo‐ and mechanobiology.
A light‐addressable nanocomposite hydrogel as an active 3D extracellular matrix is reported, where temperature gradients and mechanical deformation can be generated locally and monitored optically, at the single cell level. Remote cell actuation and in situ parameter monitoring are essential in developing new emerging tools for cell biology and tissue engineering.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202108234</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9577-2844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-01, Vol.32 (5), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2622492677 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Actuation Composite materials Deformation Fluorescence Formability Hydrogels in situ cell deformation Infrared lasers localized 3D temperature measurement, optical cell actuation Materials science Monitoring Nanocomposites Nanoparticles Nanorods plasmonic nanoparticles Plasmonics poly(ethylene glycol) hydrogels Polyethylene glycol Rhodamine Silicon dioxide Temperature sensors |
title | Light‐Addressable Nanocomposite Hydrogels Allow Plasmonic Actuation and In Situ Temperature Monitoring in 3D Cell Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%E2%80%90Addressable%20Nanocomposite%20Hydrogels%20Allow%20Plasmonic%20Actuation%20and%20In%20Situ%20Temperature%20Monitoring%20in%203D%20Cell%20Matrices&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Wei&rft.date=2022-01-01&rft.volume=32&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202108234&rft_dat=%3Cproquest_cross%3E2622492677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3574-cbabbf470a613e6bc241434ec159bbe7dafb6f7736b7e4c4c0692515ee98df773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622492677&rft_id=info:pmid/&rfr_iscdi=true |