Loading…

A Gaussian process‐based approach toward credit risk modeling using stationary activations

The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to tr...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation 2022-02, Vol.34 (5), p.n/a
Main Authors: Mahajan, Shubham, Nayyar, Anand, Raina, Akshay, Singh, Samreen J., Vashishtha, Ashutosh, Pandit, Amit Kant
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73
cites cdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73
container_end_page n/a
container_issue 5
container_start_page
container_title Concurrency and computation
container_volume 34
creator Mahajan, Shubham
Nayyar, Anand
Raina, Akshay
Singh, Samreen J.
Vashishtha, Ashutosh
Pandit, Amit Kant
description The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405.
doi_str_mv 10.1002/cpe.6692
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622989808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622989808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJl6k8xkMstStAoFXehOCJlMqqntzJg7Y-nOR_AZfRLTVty5uX983HM4hJwzGDEAfmVbN5Ky4AdkwDLBE5AiPfybuTwmJ4gLAMZAsAF5HtOp6RG9qWkbGusQvz-_SoOuoqaNF2NfadesTaioDa7yHQ0e3-iqqdzS1y-0x23FznS-qU3YUGM7_7Hb8JQczc0S3dlvH5Knm-vHyW0yu5_eTcazxPIi2spSqEooc2ltIYSziucqTxVj0ijgULA8K3npWClAGi6VNAKUK1nm5lmR2lwMycX-b_T73jvs9KLpQx0lNZecF6pQoCJ1uadsaBCDm-s2-FW0rBnobXY6Zqe32UU02aNrv3Sbfzk9ebje8T_saHCu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622989808</pqid></control><display><type>article</type><title>A Gaussian process‐based approach toward credit risk modeling using stationary activations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mahajan, Shubham ; Nayyar, Anand ; Raina, Akshay ; Singh, Samreen J. ; Vashishtha, Ashutosh ; Pandit, Amit Kant</creator><creatorcontrib>Mahajan, Shubham ; Nayyar, Anand ; Raina, Akshay ; Singh, Samreen J. ; Vashishtha, Ashutosh ; Pandit, Amit Kant</creatorcontrib><description>The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6692</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Classification ; Credit risk ; credit risk prediction ; Data points ; Datasets ; feedforward neural networks ; Gaussian process ; Gaussian processes ; machine learning ; multilayer perceptron ; Neural networks ; Performance measurement ; Risk ; Social factors ; stochastic signal processing</subject><ispartof>Concurrency and computation, 2022-02, Vol.34 (5), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</citedby><cites>FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</cites><orcidid>0000-0002-9821-6146 ; 0000-0003-4866-3746 ; 0000-0003-0385-3933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahajan, Shubham</creatorcontrib><creatorcontrib>Nayyar, Anand</creatorcontrib><creatorcontrib>Raina, Akshay</creatorcontrib><creatorcontrib>Singh, Samreen J.</creatorcontrib><creatorcontrib>Vashishtha, Ashutosh</creatorcontrib><creatorcontrib>Pandit, Amit Kant</creatorcontrib><title>A Gaussian process‐based approach toward credit risk modeling using stationary activations</title><title>Concurrency and computation</title><description>The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Credit risk</subject><subject>credit risk prediction</subject><subject>Data points</subject><subject>Datasets</subject><subject>feedforward neural networks</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>machine learning</subject><subject>multilayer perceptron</subject><subject>Neural networks</subject><subject>Performance measurement</subject><subject>Risk</subject><subject>Social factors</subject><subject>stochastic signal processing</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJl6k8xkMstStAoFXehOCJlMqqntzJg7Y-nOR_AZfRLTVty5uX983HM4hJwzGDEAfmVbN5Ky4AdkwDLBE5AiPfybuTwmJ4gLAMZAsAF5HtOp6RG9qWkbGusQvz-_SoOuoqaNF2NfadesTaioDa7yHQ0e3-iqqdzS1y-0x23FznS-qU3YUGM7_7Hb8JQczc0S3dlvH5Knm-vHyW0yu5_eTcazxPIi2spSqEooc2ltIYSziucqTxVj0ijgULA8K3npWClAGi6VNAKUK1nm5lmR2lwMycX-b_T73jvs9KLpQx0lNZecF6pQoCJ1uadsaBCDm-s2-FW0rBnobXY6Zqe32UU02aNrv3Sbfzk9ebje8T_saHCu</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Mahajan, Shubham</creator><creator>Nayyar, Anand</creator><creator>Raina, Akshay</creator><creator>Singh, Samreen J.</creator><creator>Vashishtha, Ashutosh</creator><creator>Pandit, Amit Kant</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9821-6146</orcidid><orcidid>https://orcid.org/0000-0003-4866-3746</orcidid><orcidid>https://orcid.org/0000-0003-0385-3933</orcidid></search><sort><creationdate>20220228</creationdate><title>A Gaussian process‐based approach toward credit risk modeling using stationary activations</title><author>Mahajan, Shubham ; Nayyar, Anand ; Raina, Akshay ; Singh, Samreen J. ; Vashishtha, Ashutosh ; Pandit, Amit Kant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Credit risk</topic><topic>credit risk prediction</topic><topic>Data points</topic><topic>Datasets</topic><topic>feedforward neural networks</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>machine learning</topic><topic>multilayer perceptron</topic><topic>Neural networks</topic><topic>Performance measurement</topic><topic>Risk</topic><topic>Social factors</topic><topic>stochastic signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahajan, Shubham</creatorcontrib><creatorcontrib>Nayyar, Anand</creatorcontrib><creatorcontrib>Raina, Akshay</creatorcontrib><creatorcontrib>Singh, Samreen J.</creatorcontrib><creatorcontrib>Vashishtha, Ashutosh</creatorcontrib><creatorcontrib>Pandit, Amit Kant</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahajan, Shubham</au><au>Nayyar, Anand</au><au>Raina, Akshay</au><au>Singh, Samreen J.</au><au>Vashishtha, Ashutosh</au><au>Pandit, Amit Kant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gaussian process‐based approach toward credit risk modeling using stationary activations</atitle><jtitle>Concurrency and computation</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpe.6692</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9821-6146</orcidid><orcidid>https://orcid.org/0000-0003-4866-3746</orcidid><orcidid>https://orcid.org/0000-0003-0385-3933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2022-02, Vol.34 (5), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2622989808
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Classification
Credit risk
credit risk prediction
Data points
Datasets
feedforward neural networks
Gaussian process
Gaussian processes
machine learning
multilayer perceptron
Neural networks
Performance measurement
Risk
Social factors
stochastic signal processing
title A Gaussian process‐based approach toward credit risk modeling using stationary activations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gaussian%20process%E2%80%90based%20approach%20toward%20credit%20risk%20modeling%20using%20stationary%20activations&rft.jtitle=Concurrency%20and%20computation&rft.au=Mahajan,%20Shubham&rft.date=2022-02-28&rft.volume=34&rft.issue=5&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6692&rft_dat=%3Cproquest_cross%3E2622989808%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622989808&rft_id=info:pmid/&rfr_iscdi=true