Loading…
A Gaussian process‐based approach toward credit risk modeling using stationary activations
The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to tr...
Saved in:
Published in: | Concurrency and computation 2022-02, Vol.34 (5), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 34 |
creator | Mahajan, Shubham Nayyar, Anand Raina, Akshay Singh, Samreen J. Vashishtha, Ashutosh Pandit, Amit Kant |
description | The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405. |
doi_str_mv | 10.1002/cpe.6692 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622989808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622989808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJl6k8xkMstStAoFXehOCJlMqqntzJg7Y-nOR_AZfRLTVty5uX983HM4hJwzGDEAfmVbN5Ky4AdkwDLBE5AiPfybuTwmJ4gLAMZAsAF5HtOp6RG9qWkbGusQvz-_SoOuoqaNF2NfadesTaioDa7yHQ0e3-iqqdzS1y-0x23FznS-qU3YUGM7_7Hb8JQczc0S3dlvH5Knm-vHyW0yu5_eTcazxPIi2spSqEooc2ltIYSziucqTxVj0ijgULA8K3npWClAGi6VNAKUK1nm5lmR2lwMycX-b_T73jvs9KLpQx0lNZecF6pQoCJ1uadsaBCDm-s2-FW0rBnobXY6Zqe32UU02aNrv3Sbfzk9ebje8T_saHCu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622989808</pqid></control><display><type>article</type><title>A Gaussian process‐based approach toward credit risk modeling using stationary activations</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mahajan, Shubham ; Nayyar, Anand ; Raina, Akshay ; Singh, Samreen J. ; Vashishtha, Ashutosh ; Pandit, Amit Kant</creator><creatorcontrib>Mahajan, Shubham ; Nayyar, Anand ; Raina, Akshay ; Singh, Samreen J. ; Vashishtha, Ashutosh ; Pandit, Amit Kant</creatorcontrib><description>The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6692</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Classification ; Credit risk ; credit risk prediction ; Data points ; Datasets ; feedforward neural networks ; Gaussian process ; Gaussian processes ; machine learning ; multilayer perceptron ; Neural networks ; Performance measurement ; Risk ; Social factors ; stochastic signal processing</subject><ispartof>Concurrency and computation, 2022-02, Vol.34 (5), p.n/a</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</citedby><cites>FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</cites><orcidid>0000-0002-9821-6146 ; 0000-0003-4866-3746 ; 0000-0003-0385-3933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahajan, Shubham</creatorcontrib><creatorcontrib>Nayyar, Anand</creatorcontrib><creatorcontrib>Raina, Akshay</creatorcontrib><creatorcontrib>Singh, Samreen J.</creatorcontrib><creatorcontrib>Vashishtha, Ashutosh</creatorcontrib><creatorcontrib>Pandit, Amit Kant</creatorcontrib><title>A Gaussian process‐based approach toward credit risk modeling using stationary activations</title><title>Concurrency and computation</title><description>The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Credit risk</subject><subject>credit risk prediction</subject><subject>Data points</subject><subject>Datasets</subject><subject>feedforward neural networks</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>machine learning</subject><subject>multilayer perceptron</subject><subject>Neural networks</subject><subject>Performance measurement</subject><subject>Risk</subject><subject>Social factors</subject><subject>stochastic signal processing</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJl6k8xkMstStAoFXehOCJlMqqntzJg7Y-nOR_AZfRLTVty5uX983HM4hJwzGDEAfmVbN5Ky4AdkwDLBE5AiPfybuTwmJ4gLAMZAsAF5HtOp6RG9qWkbGusQvz-_SoOuoqaNF2NfadesTaioDa7yHQ0e3-iqqdzS1y-0x23FznS-qU3YUGM7_7Hb8JQczc0S3dlvH5Knm-vHyW0yu5_eTcazxPIi2spSqEooc2ltIYSziucqTxVj0ijgULA8K3npWClAGi6VNAKUK1nm5lmR2lwMycX-b_T73jvs9KLpQx0lNZecF6pQoCJ1uadsaBCDm-s2-FW0rBnobXY6Zqe32UU02aNrv3Sbfzk9ebje8T_saHCu</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Mahajan, Shubham</creator><creator>Nayyar, Anand</creator><creator>Raina, Akshay</creator><creator>Singh, Samreen J.</creator><creator>Vashishtha, Ashutosh</creator><creator>Pandit, Amit Kant</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9821-6146</orcidid><orcidid>https://orcid.org/0000-0003-4866-3746</orcidid><orcidid>https://orcid.org/0000-0003-0385-3933</orcidid></search><sort><creationdate>20220228</creationdate><title>A Gaussian process‐based approach toward credit risk modeling using stationary activations</title><author>Mahajan, Shubham ; Nayyar, Anand ; Raina, Akshay ; Singh, Samreen J. ; Vashishtha, Ashutosh ; Pandit, Amit Kant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Credit risk</topic><topic>credit risk prediction</topic><topic>Data points</topic><topic>Datasets</topic><topic>feedforward neural networks</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>machine learning</topic><topic>multilayer perceptron</topic><topic>Neural networks</topic><topic>Performance measurement</topic><topic>Risk</topic><topic>Social factors</topic><topic>stochastic signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahajan, Shubham</creatorcontrib><creatorcontrib>Nayyar, Anand</creatorcontrib><creatorcontrib>Raina, Akshay</creatorcontrib><creatorcontrib>Singh, Samreen J.</creatorcontrib><creatorcontrib>Vashishtha, Ashutosh</creatorcontrib><creatorcontrib>Pandit, Amit Kant</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahajan, Shubham</au><au>Nayyar, Anand</au><au>Raina, Akshay</au><au>Singh, Samreen J.</au><au>Vashishtha, Ashutosh</au><au>Pandit, Amit Kant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gaussian process‐based approach toward credit risk modeling using stationary activations</atitle><jtitle>Concurrency and computation</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>The task of predicting the risk of defaulting of a lender using tools in the domain of AI is an emerging one and in growing demand, given the revolutionary potential of AI. Various attributes like income, properties acquired, educational status, and many other socioeconomic factors can be used to train a model to predict the possibilities of nonrepayment of a loan or its chances. Most of the techniques and algorithms used in this regard previously do not submit any attention to the uncertainty in predictions for out of distribution (OOD) in a dataset, which contributes to overfitting, leading to relatively lower accuracy for predicting these data points. Specifically, for credit risk classification, this is a serious concern, given the structure of the available datasets and the trend they follow. With a focus on this issue, we propose a robust and better methodology that uses a recent and efficient family of nonlinear neural network activation functions, which mimics the properties induced by the widely‐used Matérn family of kernels in Gaussian process (GP) models. We tested the classification performance metrics on three openly available datasets after prior preprocessing. We achieved a high mean classification accuracy of 87.4% and a lower mean negative log predictive density loss of 0.405.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cpe.6692</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9821-6146</orcidid><orcidid>https://orcid.org/0000-0003-4866-3746</orcidid><orcidid>https://orcid.org/0000-0003-0385-3933</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2022-02, Vol.34 (5), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2622989808 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Classification Credit risk credit risk prediction Data points Datasets feedforward neural networks Gaussian process Gaussian processes machine learning multilayer perceptron Neural networks Performance measurement Risk Social factors stochastic signal processing |
title | A Gaussian process‐based approach toward credit risk modeling using stationary activations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gaussian%20process%E2%80%90based%20approach%20toward%20credit%20risk%20modeling%20using%20stationary%20activations&rft.jtitle=Concurrency%20and%20computation&rft.au=Mahajan,%20Shubham&rft.date=2022-02-28&rft.volume=34&rft.issue=5&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6692&rft_dat=%3Cproquest_cross%3E2622989808%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2932-540db0b76cc933ec8278748116a80209175b2be1b306a2686a308eb15ef594c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622989808&rft_id=info:pmid/&rfr_iscdi=true |