Loading…

Weighted \(L^2\) Holomorphic functions on ball-fiber bundles over compact Kähler manifolds

Let \(\widetilde{M}\) be a complex manifold and \(\Gamma\) be a torsion-free cocompact lattice of \(\text{Aut}(\widetilde{M})\). Let \(\rho\colon\Gamma\to SU(N,1)\) be a representation and \(M:=\widetilde M/\Gamma\) be an \(n\)-dimensional compact complex manifold which admits a holomorphic embeddin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-04
Main Authors: Lee, Seungjae, Seo, Aeryeong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lee, Seungjae
Seo, Aeryeong
description Let \(\widetilde{M}\) be a complex manifold and \(\Gamma\) be a torsion-free cocompact lattice of \(\text{Aut}(\widetilde{M})\). Let \(\rho\colon\Gamma\to SU(N,1)\) be a representation and \(M:=\widetilde M/\Gamma\) be an \(n\)-dimensional compact complex manifold which admits a holomorphic embedding \(\imath\) into \(\Sigma:=\mathbb B^N/\rho(\Gamma)\). In this paper, we investigate a relation between weighted \(L^2\) holomorphic functions on the fiber bundle \(\Omega:=M\times_\rho\mathbb B^N\) and the holomorphic sections of the pull-back bundle \(\imath^{-1}(S^mT^*_\Sigma)\) over \(M\). In particular, \(A^2_\alpha(\Omega)\) has infinite dimension for any \(\alpha>-1\) and if \(n-1\), \(A^2_\alpha(\mathbb B^n\times_{\rho} \mathbb B^N)\) has infinite dimension. If \(n
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2623198759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623198759</sourcerecordid><originalsourceid>FETCH-proquest_journals_26231987593</originalsourceid><addsrcrecordid>eNqNik0KwjAYBYMgWLR3CLjRRaFN7N9alIIuBRcWS9omNiXNV5vGE3kTL2YXHsDVMPPeDDmE0sBLdoQskGtM6_s-iWIShtRBtyuXj2bkNc435zvJtzgDBR0MfSMrLKyuRgnaYNC4ZEp5QpZ8wKXVteJTfU1SQdezasSnz7tRk3dMSwGqNis0F0wZ7v64ROvj4bLPvH6Ap-VmLFqwg56mgkSEBmkShyn97_UFY_5DUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623198759</pqid></control><display><type>article</type><title>Weighted \(L^2\) Holomorphic functions on ball-fiber bundles over compact Kähler manifolds</title><source>Publicly Available Content (ProQuest)</source><creator>Lee, Seungjae ; Seo, Aeryeong</creator><creatorcontrib>Lee, Seungjae ; Seo, Aeryeong</creatorcontrib><description>Let \(\widetilde{M}\) be a complex manifold and \(\Gamma\) be a torsion-free cocompact lattice of \(\text{Aut}(\widetilde{M})\). Let \(\rho\colon\Gamma\to SU(N,1)\) be a representation and \(M:=\widetilde M/\Gamma\) be an \(n\)-dimensional compact complex manifold which admits a holomorphic embedding \(\imath\) into \(\Sigma:=\mathbb B^N/\rho(\Gamma)\). In this paper, we investigate a relation between weighted \(L^2\) holomorphic functions on the fiber bundle \(\Omega:=M\times_\rho\mathbb B^N\) and the holomorphic sections of the pull-back bundle \(\imath^{-1}(S^mT^*_\Sigma)\) over \(M\). In particular, \(A^2_\alpha(\Omega)\) has infinite dimension for any \(\alpha&gt;-1\) and if \(n&lt;N\), then \(A^2_{-1}(\Omega)\) also has the same property. As an application, if \(\Gamma\) is a torsion-free cocompact lattice in \(SU(n,1)\), \(n\geq 2\), and \(\rho\colon \Gamma\to SU(N,1)\) is a maximal representation, then for any \(\alpha&gt;-1\), \(A^2_\alpha(\mathbb B^n\times_{\rho} \mathbb B^N)\) has infinite dimension. If \(n&lt;N\), then \(A_{-1}^2(\mathbb B^n\times_{\rho} \mathbb B^N)\) also has the same property.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Colon ; Manifolds (mathematics) ; Mathematical analysis ; Representations</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2623198759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Lee, Seungjae</creatorcontrib><creatorcontrib>Seo, Aeryeong</creatorcontrib><title>Weighted \(L^2\) Holomorphic functions on ball-fiber bundles over compact Kähler manifolds</title><title>arXiv.org</title><description>Let \(\widetilde{M}\) be a complex manifold and \(\Gamma\) be a torsion-free cocompact lattice of \(\text{Aut}(\widetilde{M})\). Let \(\rho\colon\Gamma\to SU(N,1)\) be a representation and \(M:=\widetilde M/\Gamma\) be an \(n\)-dimensional compact complex manifold which admits a holomorphic embedding \(\imath\) into \(\Sigma:=\mathbb B^N/\rho(\Gamma)\). In this paper, we investigate a relation between weighted \(L^2\) holomorphic functions on the fiber bundle \(\Omega:=M\times_\rho\mathbb B^N\) and the holomorphic sections of the pull-back bundle \(\imath^{-1}(S^mT^*_\Sigma)\) over \(M\). In particular, \(A^2_\alpha(\Omega)\) has infinite dimension for any \(\alpha&gt;-1\) and if \(n&lt;N\), then \(A^2_{-1}(\Omega)\) also has the same property. As an application, if \(\Gamma\) is a torsion-free cocompact lattice in \(SU(n,1)\), \(n\geq 2\), and \(\rho\colon \Gamma\to SU(N,1)\) is a maximal representation, then for any \(\alpha&gt;-1\), \(A^2_\alpha(\mathbb B^n\times_{\rho} \mathbb B^N)\) has infinite dimension. If \(n&lt;N\), then \(A_{-1}^2(\mathbb B^n\times_{\rho} \mathbb B^N)\) also has the same property.</description><subject>Analytic functions</subject><subject>Colon</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNik0KwjAYBYMgWLR3CLjRRaFN7N9alIIuBRcWS9omNiXNV5vGE3kTL2YXHsDVMPPeDDmE0sBLdoQskGtM6_s-iWIShtRBtyuXj2bkNc435zvJtzgDBR0MfSMrLKyuRgnaYNC4ZEp5QpZ8wKXVteJTfU1SQdezasSnz7tRk3dMSwGqNis0F0wZ7v64ROvj4bLPvH6Ap-VmLFqwg56mgkSEBmkShyn97_UFY_5DUg</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Lee, Seungjae</creator><creator>Seo, Aeryeong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230413</creationdate><title>Weighted \(L^2\) Holomorphic functions on ball-fiber bundles over compact Kähler manifolds</title><author>Lee, Seungjae ; Seo, Aeryeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26231987593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic functions</topic><topic>Colon</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seungjae</creatorcontrib><creatorcontrib>Seo, Aeryeong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seungjae</au><au>Seo, Aeryeong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Weighted \(L^2\) Holomorphic functions on ball-fiber bundles over compact Kähler manifolds</atitle><jtitle>arXiv.org</jtitle><date>2023-04-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(\widetilde{M}\) be a complex manifold and \(\Gamma\) be a torsion-free cocompact lattice of \(\text{Aut}(\widetilde{M})\). Let \(\rho\colon\Gamma\to SU(N,1)\) be a representation and \(M:=\widetilde M/\Gamma\) be an \(n\)-dimensional compact complex manifold which admits a holomorphic embedding \(\imath\) into \(\Sigma:=\mathbb B^N/\rho(\Gamma)\). In this paper, we investigate a relation between weighted \(L^2\) holomorphic functions on the fiber bundle \(\Omega:=M\times_\rho\mathbb B^N\) and the holomorphic sections of the pull-back bundle \(\imath^{-1}(S^mT^*_\Sigma)\) over \(M\). In particular, \(A^2_\alpha(\Omega)\) has infinite dimension for any \(\alpha&gt;-1\) and if \(n&lt;N\), then \(A^2_{-1}(\Omega)\) also has the same property. As an application, if \(\Gamma\) is a torsion-free cocompact lattice in \(SU(n,1)\), \(n\geq 2\), and \(\rho\colon \Gamma\to SU(N,1)\) is a maximal representation, then for any \(\alpha&gt;-1\), \(A^2_\alpha(\mathbb B^n\times_{\rho} \mathbb B^N)\) has infinite dimension. If \(n&lt;N\), then \(A_{-1}^2(\mathbb B^n\times_{\rho} \mathbb B^N)\) also has the same property.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2623198759
source Publicly Available Content (ProQuest)
subjects Analytic functions
Colon
Manifolds (mathematics)
Mathematical analysis
Representations
title Weighted \(L^2\) Holomorphic functions on ball-fiber bundles over compact Kähler manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Weighted%20%5C(L%5E2%5C)%20Holomorphic%20functions%20on%20ball-fiber%20bundles%20over%20compact%20K%C3%A4hler%20manifolds&rft.jtitle=arXiv.org&rft.au=Lee,%20Seungjae&rft.date=2023-04-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2623198759%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26231987593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623198759&rft_id=info:pmid/&rfr_iscdi=true