Loading…

Observation of competing, correlated ground states in the flat band of rhombohedral graphite

In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-07
Main Authors: Hagymási, Imre, Mohammad Syahid Mohd Isa, Tajkov, Zoltán, Márity, Krisztián, Oroszlány László, Koltai, János, Alassaf, Assem, Kun, Péter, Konrád Kandrai, Pálinkás, András, Vancsó, Péter, Tapasztó, Levente, Nemes-Incze, Péter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hagymási, Imre
Mohammad Syahid Mohd Isa
Tajkov, Zoltán
Márity, Krisztián
Oroszlány László
Koltai, János
Alassaf, Assem
Kun, Péter
Konrád Kandrai
Pálinkás, András
Vancsó, Péter
Tapasztó, Levente
Nemes-Incze, Péter
description In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate.
doi_str_mv 10.48550/arxiv.2201.10844
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2623199596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623199596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a954-88446708635b1ece5ff1add17aa9c4010f7513f1f64adf998201613ba78b26073</originalsourceid><addsrcrecordid>eNotT8lqwzAQFYVCQ5oP6E3Qa-1qt3QsoRsEcsmxEEa2FDs4livJoZ9fQXuamTdvmUHogZJaaCnJM8Sf4VozRmhNiRbiBq0Y57TSgrE7tEnpTAhhqmFS8hX62tvk4hXyECYcPG7DZXZ5mE5PpY3RjZBdh08xLFOHUy5TwsOEc--wLztsoeBFF_twsaF3XYSx0GHuh-zu0a2HMbnNf12jw9vrYftR7fbvn9uXXQVGikqXI1VDtOLSUtc66T2FrqMNgGkFocQ3knJPvRLQeWN0eU1RbqHRlinS8DV6_LOdY_heXMrHc1jiVBKPTDFOjZFG8V-ok1S6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623199596</pqid></control><display><type>article</type><title>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</title><source>Publicly Available Content Database</source><creator>Hagymási, Imre ; Mohammad Syahid Mohd Isa ; Tajkov, Zoltán ; Márity, Krisztián ; Oroszlány László ; Koltai, János ; Alassaf, Assem ; Kun, Péter ; Konrád Kandrai ; Pálinkás, András ; Vancsó, Péter ; Tapasztó, Levente ; Nemes-Incze, Péter</creator><creatorcontrib>Hagymási, Imre ; Mohammad Syahid Mohd Isa ; Tajkov, Zoltán ; Márity, Krisztián ; Oroszlány László ; Koltai, János ; Alassaf, Assem ; Kun, Péter ; Konrád Kandrai ; Pálinkás, András ; Vancsó, Péter ; Tapasztó, Levente ; Nemes-Incze, Péter</creatorcontrib><description>In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2201.10844</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Charge density ; Complex compounds ; Graphite ; Ground state ; High temperature ; Magnetism ; Magnets ; Scanning tunneling microscopy ; Spintronics ; Superconductivity</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2623199596?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Hagymási, Imre</creatorcontrib><creatorcontrib>Mohammad Syahid Mohd Isa</creatorcontrib><creatorcontrib>Tajkov, Zoltán</creatorcontrib><creatorcontrib>Márity, Krisztián</creatorcontrib><creatorcontrib>Oroszlány László</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Alassaf, Assem</creatorcontrib><creatorcontrib>Kun, Péter</creatorcontrib><creatorcontrib>Konrád Kandrai</creatorcontrib><creatorcontrib>Pálinkás, András</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><title>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</title><title>arXiv.org</title><description>In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate.</description><subject>Antiferromagnetism</subject><subject>Charge density</subject><subject>Complex compounds</subject><subject>Graphite</subject><subject>Ground state</subject><subject>High temperature</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>Scanning tunneling microscopy</subject><subject>Spintronics</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT8lqwzAQFYVCQ5oP6E3Qa-1qt3QsoRsEcsmxEEa2FDs4livJoZ9fQXuamTdvmUHogZJaaCnJM8Sf4VozRmhNiRbiBq0Y57TSgrE7tEnpTAhhqmFS8hX62tvk4hXyECYcPG7DZXZ5mE5PpY3RjZBdh08xLFOHUy5TwsOEc--wLztsoeBFF_twsaF3XYSx0GHuh-zu0a2HMbnNf12jw9vrYftR7fbvn9uXXQVGikqXI1VDtOLSUtc66T2FrqMNgGkFocQ3knJPvRLQeWN0eU1RbqHRlinS8DV6_LOdY_heXMrHc1jiVBKPTDFOjZFG8V-ok1S6</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Hagymási, Imre</creator><creator>Mohammad Syahid Mohd Isa</creator><creator>Tajkov, Zoltán</creator><creator>Márity, Krisztián</creator><creator>Oroszlány László</creator><creator>Koltai, János</creator><creator>Alassaf, Assem</creator><creator>Kun, Péter</creator><creator>Konrád Kandrai</creator><creator>Pálinkás, András</creator><creator>Vancsó, Péter</creator><creator>Tapasztó, Levente</creator><creator>Nemes-Incze, Péter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220715</creationdate><title>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</title><author>Hagymási, Imre ; Mohammad Syahid Mohd Isa ; Tajkov, Zoltán ; Márity, Krisztián ; Oroszlány László ; Koltai, János ; Alassaf, Assem ; Kun, Péter ; Konrád Kandrai ; Pálinkás, András ; Vancsó, Péter ; Tapasztó, Levente ; Nemes-Incze, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a954-88446708635b1ece5ff1add17aa9c4010f7513f1f64adf998201613ba78b26073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Charge density</topic><topic>Complex compounds</topic><topic>Graphite</topic><topic>Ground state</topic><topic>High temperature</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>Scanning tunneling microscopy</topic><topic>Spintronics</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hagymási, Imre</creatorcontrib><creatorcontrib>Mohammad Syahid Mohd Isa</creatorcontrib><creatorcontrib>Tajkov, Zoltán</creatorcontrib><creatorcontrib>Márity, Krisztián</creatorcontrib><creatorcontrib>Oroszlány László</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Alassaf, Assem</creatorcontrib><creatorcontrib>Kun, Péter</creatorcontrib><creatorcontrib>Konrád Kandrai</creatorcontrib><creatorcontrib>Pálinkás, András</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagymási, Imre</au><au>Mohammad Syahid Mohd Isa</au><au>Tajkov, Zoltán</au><au>Márity, Krisztián</au><au>Oroszlány László</au><au>Koltai, János</au><au>Alassaf, Assem</au><au>Kun, Péter</au><au>Konrád Kandrai</au><au>Pálinkás, András</au><au>Vancsó, Péter</au><au>Tapasztó, Levente</au><au>Nemes-Incze, Péter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</atitle><jtitle>arXiv.org</jtitle><date>2022-07-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2201.10844</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2623199596
source Publicly Available Content Database
subjects Antiferromagnetism
Charge density
Complex compounds
Graphite
Ground state
High temperature
Magnetism
Magnets
Scanning tunneling microscopy
Spintronics
Superconductivity
title Observation of competing, correlated ground states in the flat band of rhombohedral graphite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20competing,%20correlated%20ground%20states%20in%20the%20flat%20band%20of%20rhombohedral%20graphite&rft.jtitle=arXiv.org&rft.au=Hagym%C3%A1si,%20Imre&rft.date=2022-07-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2201.10844&rft_dat=%3Cproquest%3E2623199596%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a954-88446708635b1ece5ff1add17aa9c4010f7513f1f64adf998201613ba78b26073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623199596&rft_id=info:pmid/&rfr_iscdi=true