Loading…
Observation of competing, correlated ground states in the flat band of rhombohedral graphite
In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps...
Saved in:
Published in: | arXiv.org 2022-07 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hagymási, Imre Mohammad Syahid Mohd Isa Tajkov, Zoltán Márity, Krisztián Oroszlány László Koltai, János Alassaf, Assem Kun, Péter Konrád Kandrai Pálinkás, András Vancsó, Péter Tapasztó, Levente Nemes-Incze, Péter |
description | In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate. |
doi_str_mv | 10.48550/arxiv.2201.10844 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2623199596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623199596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a954-88446708635b1ece5ff1add17aa9c4010f7513f1f64adf998201613ba78b26073</originalsourceid><addsrcrecordid>eNotT8lqwzAQFYVCQ5oP6E3Qa-1qt3QsoRsEcsmxEEa2FDs4livJoZ9fQXuamTdvmUHogZJaaCnJM8Sf4VozRmhNiRbiBq0Y57TSgrE7tEnpTAhhqmFS8hX62tvk4hXyECYcPG7DZXZ5mE5PpY3RjZBdh08xLFOHUy5TwsOEc--wLztsoeBFF_twsaF3XYSx0GHuh-zu0a2HMbnNf12jw9vrYftR7fbvn9uXXQVGikqXI1VDtOLSUtc66T2FrqMNgGkFocQ3knJPvRLQeWN0eU1RbqHRlinS8DV6_LOdY_heXMrHc1jiVBKPTDFOjZFG8V-ok1S6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623199596</pqid></control><display><type>article</type><title>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</title><source>Publicly Available Content Database</source><creator>Hagymási, Imre ; Mohammad Syahid Mohd Isa ; Tajkov, Zoltán ; Márity, Krisztián ; Oroszlány László ; Koltai, János ; Alassaf, Assem ; Kun, Péter ; Konrád Kandrai ; Pálinkás, András ; Vancsó, Péter ; Tapasztó, Levente ; Nemes-Incze, Péter</creator><creatorcontrib>Hagymási, Imre ; Mohammad Syahid Mohd Isa ; Tajkov, Zoltán ; Márity, Krisztián ; Oroszlány László ; Koltai, János ; Alassaf, Assem ; Kun, Péter ; Konrád Kandrai ; Pálinkás, András ; Vancsó, Péter ; Tapasztó, Levente ; Nemes-Incze, Péter</creatorcontrib><description>In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2201.10844</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Charge density ; Complex compounds ; Graphite ; Ground state ; High temperature ; Magnetism ; Magnets ; Scanning tunneling microscopy ; Spintronics ; Superconductivity</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2623199596?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Hagymási, Imre</creatorcontrib><creatorcontrib>Mohammad Syahid Mohd Isa</creatorcontrib><creatorcontrib>Tajkov, Zoltán</creatorcontrib><creatorcontrib>Márity, Krisztián</creatorcontrib><creatorcontrib>Oroszlány László</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Alassaf, Assem</creatorcontrib><creatorcontrib>Kun, Péter</creatorcontrib><creatorcontrib>Konrád Kandrai</creatorcontrib><creatorcontrib>Pálinkás, András</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><title>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</title><title>arXiv.org</title><description>In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate.</description><subject>Antiferromagnetism</subject><subject>Charge density</subject><subject>Complex compounds</subject><subject>Graphite</subject><subject>Ground state</subject><subject>High temperature</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>Scanning tunneling microscopy</subject><subject>Spintronics</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT8lqwzAQFYVCQ5oP6E3Qa-1qt3QsoRsEcsmxEEa2FDs4livJoZ9fQXuamTdvmUHogZJaaCnJM8Sf4VozRmhNiRbiBq0Y57TSgrE7tEnpTAhhqmFS8hX62tvk4hXyECYcPG7DZXZ5mE5PpY3RjZBdh08xLFOHUy5TwsOEc--wLztsoeBFF_twsaF3XYSx0GHuh-zu0a2HMbnNf12jw9vrYftR7fbvn9uXXQVGikqXI1VDtOLSUtc66T2FrqMNgGkFocQ3knJPvRLQeWN0eU1RbqHRlinS8DV6_LOdY_heXMrHc1jiVBKPTDFOjZFG8V-ok1S6</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Hagymási, Imre</creator><creator>Mohammad Syahid Mohd Isa</creator><creator>Tajkov, Zoltán</creator><creator>Márity, Krisztián</creator><creator>Oroszlány László</creator><creator>Koltai, János</creator><creator>Alassaf, Assem</creator><creator>Kun, Péter</creator><creator>Konrád Kandrai</creator><creator>Pálinkás, András</creator><creator>Vancsó, Péter</creator><creator>Tapasztó, Levente</creator><creator>Nemes-Incze, Péter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220715</creationdate><title>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</title><author>Hagymási, Imre ; Mohammad Syahid Mohd Isa ; Tajkov, Zoltán ; Márity, Krisztián ; Oroszlány László ; Koltai, János ; Alassaf, Assem ; Kun, Péter ; Konrád Kandrai ; Pálinkás, András ; Vancsó, Péter ; Tapasztó, Levente ; Nemes-Incze, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a954-88446708635b1ece5ff1add17aa9c4010f7513f1f64adf998201613ba78b26073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Charge density</topic><topic>Complex compounds</topic><topic>Graphite</topic><topic>Ground state</topic><topic>High temperature</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>Scanning tunneling microscopy</topic><topic>Spintronics</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hagymási, Imre</creatorcontrib><creatorcontrib>Mohammad Syahid Mohd Isa</creatorcontrib><creatorcontrib>Tajkov, Zoltán</creatorcontrib><creatorcontrib>Márity, Krisztián</creatorcontrib><creatorcontrib>Oroszlány László</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Alassaf, Assem</creatorcontrib><creatorcontrib>Kun, Péter</creatorcontrib><creatorcontrib>Konrád Kandrai</creatorcontrib><creatorcontrib>Pálinkás, András</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagymási, Imre</au><au>Mohammad Syahid Mohd Isa</au><au>Tajkov, Zoltán</au><au>Márity, Krisztián</au><au>Oroszlány László</au><au>Koltai, János</au><au>Alassaf, Assem</au><au>Kun, Péter</au><au>Konrád Kandrai</au><au>Pálinkás, András</au><au>Vancsó, Péter</au><au>Tapasztó, Levente</au><au>Nemes-Incze, Péter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of competing, correlated ground states in the flat band of rhombohedral graphite</atitle><jtitle>arXiv.org</jtitle><date>2022-07-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In crystalline solids the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in 'magic-angle' bilayer graphene. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy we map the flat band charge density of 8, 10 and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density-matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a new platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2201.10844</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2623199596 |
source | Publicly Available Content Database |
subjects | Antiferromagnetism Charge density Complex compounds Graphite Ground state High temperature Magnetism Magnets Scanning tunneling microscopy Spintronics Superconductivity |
title | Observation of competing, correlated ground states in the flat band of rhombohedral graphite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20competing,%20correlated%20ground%20states%20in%20the%20flat%20band%20of%20rhombohedral%20graphite&rft.jtitle=arXiv.org&rft.au=Hagym%C3%A1si,%20Imre&rft.date=2022-07-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2201.10844&rft_dat=%3Cproquest%3E2623199596%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a954-88446708635b1ece5ff1add17aa9c4010f7513f1f64adf998201613ba78b26073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623199596&rft_id=info:pmid/&rfr_iscdi=true |