Loading…

Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering

Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technolo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2022-02, Vol.43 (2), p.228-231
Main Authors: Hsu, Shu-Ming, Yang, Cheng-En, Lu, Min-Hsuan, Lin, Yi-Ting, Yen, Hung-Wei, Cheng, I-Chun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3
cites cdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3
container_end_page 231
container_issue 2
container_start_page 228
container_title IEEE electron device letters
container_volume 43
creator Hsu, Shu-Ming
Yang, Cheng-En
Lu, Min-Hsuan
Lin, Yi-Ting
Yen, Hung-Wei
Cheng, I-Chun
description Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from \alpha -SnO (110)-dominant polycrystalline to amorphous and then to \alpha -SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of 35.2 ~\mu \text{A} per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology.
doi_str_mv 10.1109/LED.2021.3136966
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2623470398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656757</ieee_id><sourcerecordid>2623470398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8BnzNzkyZpHmVuOphOWH21ZG3mMrakJp3Qf29lQ7hwXr5zLnwI3QIdAVD9MJ88jRhlMOLApZbyDA1AiJxQIfk5GlCVAeFA5SW6SmlLKWSZygbo8zWs3M61HZ74jfGV3VvfYufxOym6xuKlX-Bi4zyZut0eF9H45FIbYsI_zuA3h2e-CrEJ0bQueLzq8DiQZXNoWxud_7pGF2uzS_bmlEP0MZ0U4xcyXzzPxo9zUjENLclrpbUVEvI1rwWIihpTsay_GpgRdJUpVikmTb3SMtcchGS11IKzDJhmFR-i--NuE8P3waa23IZD9P3LkknGM0W5znuKHqkqhpSiXZdNdHsTuxJo-Wex7C2WfxbLk8W-cnesOGvtP66lkEoo_gu_Rmwi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470398</pqid></control><display><type>article</type><title>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hsu, Shu-Ming ; Yang, Cheng-En ; Lu, Min-Hsuan ; Lin, Yi-Ting ; Yen, Hung-Wei ; Cheng, I-Chun</creator><creatorcontrib>Hsu, Shu-Ming ; Yang, Cheng-En ; Lu, Min-Hsuan ; Lin, Yi-Ting ; Yen, Hung-Wei ; Cheng, I-Chun</creatorcontrib><description><![CDATA[Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (110)-dominant polycrystalline to amorphous and then to <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of <inline-formula> <tex-math notation="LaTeX">35.2 ~\mu \text{A} </tex-math></inline-formula> per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2021.3136966</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; Co-sputtering ; Electric power distribution ; Flexible components ; Glass substrates ; high mobility ; Magnetron sputtering ; Nanoclusters ; Nickel ; Optical films ; oxide semiconductor ; p-type ; P-type semiconductors ; Phase transitions ; Photonic band gap ; Polycrystals ; Semiconductor devices ; Semiconductors ; Spectroscopy ; Substrates ; Temperature measurement ; Thin film transistors ; thin-film transistor ; tin ; Tin oxides</subject><ispartof>IEEE electron device letters, 2022-02, Vol.43 (2), p.228-231</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</citedby><cites>FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</cites><orcidid>0000-0003-2209-3298 ; 0000-0001-5972-5549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Hsu, Shu-Ming</creatorcontrib><creatorcontrib>Yang, Cheng-En</creatorcontrib><creatorcontrib>Lu, Min-Hsuan</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Yen, Hung-Wei</creatorcontrib><creatorcontrib>Cheng, I-Chun</creatorcontrib><title>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (110)-dominant polycrystalline to amorphous and then to <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of <inline-formula> <tex-math notation="LaTeX">35.2 ~\mu \text{A} </tex-math></inline-formula> per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology.]]></description><subject>CMOS</subject><subject>Co-sputtering</subject><subject>Electric power distribution</subject><subject>Flexible components</subject><subject>Glass substrates</subject><subject>high mobility</subject><subject>Magnetron sputtering</subject><subject>Nanoclusters</subject><subject>Nickel</subject><subject>Optical films</subject><subject>oxide semiconductor</subject><subject>p-type</subject><subject>P-type semiconductors</subject><subject>Phase transitions</subject><subject>Photonic band gap</subject><subject>Polycrystals</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Spectroscopy</subject><subject>Substrates</subject><subject>Temperature measurement</subject><subject>Thin film transistors</subject><subject>thin-film transistor</subject><subject>tin</subject><subject>Tin oxides</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKfvgi8BnzNzkyZpHmVuOphOWH21ZG3mMrakJp3Qf29lQ7hwXr5zLnwI3QIdAVD9MJ88jRhlMOLApZbyDA1AiJxQIfk5GlCVAeFA5SW6SmlLKWSZygbo8zWs3M61HZ74jfGV3VvfYufxOym6xuKlX-Bi4zyZut0eF9H45FIbYsI_zuA3h2e-CrEJ0bQueLzq8DiQZXNoWxud_7pGF2uzS_bmlEP0MZ0U4xcyXzzPxo9zUjENLclrpbUVEvI1rwWIihpTsay_GpgRdJUpVikmTb3SMtcchGS11IKzDJhmFR-i--NuE8P3waa23IZD9P3LkknGM0W5znuKHqkqhpSiXZdNdHsTuxJo-Wex7C2WfxbLk8W-cnesOGvtP66lkEoo_gu_Rmwi</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hsu, Shu-Ming</creator><creator>Yang, Cheng-En</creator><creator>Lu, Min-Hsuan</creator><creator>Lin, Yi-Ting</creator><creator>Yen, Hung-Wei</creator><creator>Cheng, I-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2209-3298</orcidid><orcidid>https://orcid.org/0000-0001-5972-5549</orcidid></search><sort><creationdate>20220201</creationdate><title>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</title><author>Hsu, Shu-Ming ; Yang, Cheng-En ; Lu, Min-Hsuan ; Lin, Yi-Ting ; Yen, Hung-Wei ; Cheng, I-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CMOS</topic><topic>Co-sputtering</topic><topic>Electric power distribution</topic><topic>Flexible components</topic><topic>Glass substrates</topic><topic>high mobility</topic><topic>Magnetron sputtering</topic><topic>Nanoclusters</topic><topic>Nickel</topic><topic>Optical films</topic><topic>oxide semiconductor</topic><topic>p-type</topic><topic>P-type semiconductors</topic><topic>Phase transitions</topic><topic>Photonic band gap</topic><topic>Polycrystals</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Spectroscopy</topic><topic>Substrates</topic><topic>Temperature measurement</topic><topic>Thin film transistors</topic><topic>thin-film transistor</topic><topic>tin</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Shu-Ming</creatorcontrib><creatorcontrib>Yang, Cheng-En</creatorcontrib><creatorcontrib>Lu, Min-Hsuan</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Yen, Hung-Wei</creatorcontrib><creatorcontrib>Cheng, I-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Shu-Ming</au><au>Yang, Cheng-En</au><au>Lu, Min-Hsuan</au><au>Lin, Yi-Ting</au><au>Yen, Hung-Wei</au><au>Cheng, I-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>43</volume><issue>2</issue><spage>228</spage><epage>231</epage><pages>228-231</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (110)-dominant polycrystalline to amorphous and then to <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of <inline-formula> <tex-math notation="LaTeX">35.2 ~\mu \text{A} </tex-math></inline-formula> per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2021.3136966</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2209-3298</orcidid><orcidid>https://orcid.org/0000-0001-5972-5549</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2022-02, Vol.43 (2), p.228-231
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_journals_2623470398
source IEEE Electronic Library (IEL) Journals
subjects CMOS
Co-sputtering
Electric power distribution
Flexible components
Glass substrates
high mobility
Magnetron sputtering
Nanoclusters
Nickel
Optical films
oxide semiconductor
p-type
P-type semiconductors
Phase transitions
Photonic band gap
Polycrystals
Semiconductor devices
Semiconductors
Spectroscopy
Substrates
Temperature measurement
Thin film transistors
thin-film transistor
tin
Tin oxides
title Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility%20Enhancement%20in%20P-Type%20SnO%20Thin-Film%20Transistors%20via%20Ni%20Incorporation%20by%20Co-Sputtering&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Hsu,%20Shu-Ming&rft.date=2022-02-01&rft.volume=43&rft.issue=2&rft.spage=228&rft.epage=231&rft.pages=228-231&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2021.3136966&rft_dat=%3Cproquest_ieee_%3E2623470398%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623470398&rft_id=info:pmid/&rft_ieee_id=9656757&rfr_iscdi=true