Loading…
Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering
Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technolo...
Saved in:
Published in: | IEEE electron device letters 2022-02, Vol.43 (2), p.228-231 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3 |
container_end_page | 231 |
container_issue | 2 |
container_start_page | 228 |
container_title | IEEE electron device letters |
container_volume | 43 |
creator | Hsu, Shu-Ming Yang, Cheng-En Lu, Min-Hsuan Lin, Yi-Ting Yen, Hung-Wei Cheng, I-Chun |
description | Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from \alpha -SnO (110)-dominant polycrystalline to amorphous and then to \alpha -SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of 35.2 ~\mu \text{A} per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology. |
doi_str_mv | 10.1109/LED.2021.3136966 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2623470398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656757</ieee_id><sourcerecordid>2623470398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8BnzNzkyZpHmVuOphOWH21ZG3mMrakJp3Qf29lQ7hwXr5zLnwI3QIdAVD9MJ88jRhlMOLApZbyDA1AiJxQIfk5GlCVAeFA5SW6SmlLKWSZygbo8zWs3M61HZ74jfGV3VvfYufxOym6xuKlX-Bi4zyZut0eF9H45FIbYsI_zuA3h2e-CrEJ0bQueLzq8DiQZXNoWxud_7pGF2uzS_bmlEP0MZ0U4xcyXzzPxo9zUjENLclrpbUVEvI1rwWIihpTsay_GpgRdJUpVikmTb3SMtcchGS11IKzDJhmFR-i--NuE8P3waa23IZD9P3LkknGM0W5znuKHqkqhpSiXZdNdHsTuxJo-Wex7C2WfxbLk8W-cnesOGvtP66lkEoo_gu_Rmwi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470398</pqid></control><display><type>article</type><title>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hsu, Shu-Ming ; Yang, Cheng-En ; Lu, Min-Hsuan ; Lin, Yi-Ting ; Yen, Hung-Wei ; Cheng, I-Chun</creator><creatorcontrib>Hsu, Shu-Ming ; Yang, Cheng-En ; Lu, Min-Hsuan ; Lin, Yi-Ting ; Yen, Hung-Wei ; Cheng, I-Chun</creatorcontrib><description><![CDATA[Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (110)-dominant polycrystalline to amorphous and then to <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of <inline-formula> <tex-math notation="LaTeX">35.2 ~\mu \text{A} </tex-math></inline-formula> per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2021.3136966</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; Co-sputtering ; Electric power distribution ; Flexible components ; Glass substrates ; high mobility ; Magnetron sputtering ; Nanoclusters ; Nickel ; Optical films ; oxide semiconductor ; p-type ; P-type semiconductors ; Phase transitions ; Photonic band gap ; Polycrystals ; Semiconductor devices ; Semiconductors ; Spectroscopy ; Substrates ; Temperature measurement ; Thin film transistors ; thin-film transistor ; tin ; Tin oxides</subject><ispartof>IEEE electron device letters, 2022-02, Vol.43 (2), p.228-231</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</citedby><cites>FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</cites><orcidid>0000-0003-2209-3298 ; 0000-0001-5972-5549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Hsu, Shu-Ming</creatorcontrib><creatorcontrib>Yang, Cheng-En</creatorcontrib><creatorcontrib>Lu, Min-Hsuan</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Yen, Hung-Wei</creatorcontrib><creatorcontrib>Cheng, I-Chun</creatorcontrib><title>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (110)-dominant polycrystalline to amorphous and then to <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of <inline-formula> <tex-math notation="LaTeX">35.2 ~\mu \text{A} </tex-math></inline-formula> per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology.]]></description><subject>CMOS</subject><subject>Co-sputtering</subject><subject>Electric power distribution</subject><subject>Flexible components</subject><subject>Glass substrates</subject><subject>high mobility</subject><subject>Magnetron sputtering</subject><subject>Nanoclusters</subject><subject>Nickel</subject><subject>Optical films</subject><subject>oxide semiconductor</subject><subject>p-type</subject><subject>P-type semiconductors</subject><subject>Phase transitions</subject><subject>Photonic band gap</subject><subject>Polycrystals</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Spectroscopy</subject><subject>Substrates</subject><subject>Temperature measurement</subject><subject>Thin film transistors</subject><subject>thin-film transistor</subject><subject>tin</subject><subject>Tin oxides</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKfvgi8BnzNzkyZpHmVuOphOWH21ZG3mMrakJp3Qf29lQ7hwXr5zLnwI3QIdAVD9MJ88jRhlMOLApZbyDA1AiJxQIfk5GlCVAeFA5SW6SmlLKWSZygbo8zWs3M61HZ74jfGV3VvfYufxOym6xuKlX-Bi4zyZut0eF9H45FIbYsI_zuA3h2e-CrEJ0bQueLzq8DiQZXNoWxud_7pGF2uzS_bmlEP0MZ0U4xcyXzzPxo9zUjENLclrpbUVEvI1rwWIihpTsay_GpgRdJUpVikmTb3SMtcchGS11IKzDJhmFR-i--NuE8P3waa23IZD9P3LkknGM0W5znuKHqkqhpSiXZdNdHsTuxJo-Wex7C2WfxbLk8W-cnesOGvtP66lkEoo_gu_Rmwi</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hsu, Shu-Ming</creator><creator>Yang, Cheng-En</creator><creator>Lu, Min-Hsuan</creator><creator>Lin, Yi-Ting</creator><creator>Yen, Hung-Wei</creator><creator>Cheng, I-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2209-3298</orcidid><orcidid>https://orcid.org/0000-0001-5972-5549</orcidid></search><sort><creationdate>20220201</creationdate><title>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</title><author>Hsu, Shu-Ming ; Yang, Cheng-En ; Lu, Min-Hsuan ; Lin, Yi-Ting ; Yen, Hung-Wei ; Cheng, I-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CMOS</topic><topic>Co-sputtering</topic><topic>Electric power distribution</topic><topic>Flexible components</topic><topic>Glass substrates</topic><topic>high mobility</topic><topic>Magnetron sputtering</topic><topic>Nanoclusters</topic><topic>Nickel</topic><topic>Optical films</topic><topic>oxide semiconductor</topic><topic>p-type</topic><topic>P-type semiconductors</topic><topic>Phase transitions</topic><topic>Photonic band gap</topic><topic>Polycrystals</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Spectroscopy</topic><topic>Substrates</topic><topic>Temperature measurement</topic><topic>Thin film transistors</topic><topic>thin-film transistor</topic><topic>tin</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Shu-Ming</creatorcontrib><creatorcontrib>Yang, Cheng-En</creatorcontrib><creatorcontrib>Lu, Min-Hsuan</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Yen, Hung-Wei</creatorcontrib><creatorcontrib>Cheng, I-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Shu-Ming</au><au>Yang, Cheng-En</au><au>Lu, Min-Hsuan</au><au>Lin, Yi-Ting</au><au>Yen, Hung-Wei</au><au>Cheng, I-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>43</volume><issue>2</issue><spage>228</spage><epage>231</epage><pages>228-231</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[Oxide semiconductors have been considered one of the most promising candidates for flexible electronics applications owing to their low process temperatures and good reliability. However, the low mobility of p-type oxide semiconductors limits the performance of flexible oxide-TFT-based CMOS technology. In this study, p-type SnO x :Ni thin films were deposited by reactive rf magnetron co-sputtering, a technique compatible with the current industrial semiconductor manufacturing technology, from Sn and Ni targets. As the Ni-gun power increased, the distribution of Ni in the SnO x :Ni thin film changed from a more uniform dispersion to nanoclusters, resulting in the crystalline phase transition of SnO x :Ni from <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (110)-dominant polycrystalline to amorphous and then to <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-SnO (101)-dominant polycrystalline. A high-mobility inverted-staggered p-type SnO x :Ni TFT was then fabricated on a glass substrate with a maximum process temperature of 225°C, which is compatible with flexible polymeric substrates. The TFT fabricated at an optimal Ni-gun power of 42 W exhibited an impressive field-effect mobility of 11 cm 2 V −1 s −1 and on current of <inline-formula> <tex-math notation="LaTeX">35.2 ~\mu \text{A} </tex-math></inline-formula> per channel width-to-length ratio; these values are comparable to those of a typical n-type oxide TFT. These results should contribute toward flexible oxide-TFT-based CMOS technology.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2021.3136966</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2209-3298</orcidid><orcidid>https://orcid.org/0000-0001-5972-5549</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2022-02, Vol.43 (2), p.228-231 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_proquest_journals_2623470398 |
source | IEEE Electronic Library (IEL) Journals |
subjects | CMOS Co-sputtering Electric power distribution Flexible components Glass substrates high mobility Magnetron sputtering Nanoclusters Nickel Optical films oxide semiconductor p-type P-type semiconductors Phase transitions Photonic band gap Polycrystals Semiconductor devices Semiconductors Spectroscopy Substrates Temperature measurement Thin film transistors thin-film transistor tin Tin oxides |
title | Mobility Enhancement in P-Type SnO Thin-Film Transistors via Ni Incorporation by Co-Sputtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility%20Enhancement%20in%20P-Type%20SnO%20Thin-Film%20Transistors%20via%20Ni%20Incorporation%20by%20Co-Sputtering&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Hsu,%20Shu-Ming&rft.date=2022-02-01&rft.volume=43&rft.issue=2&rft.spage=228&rft.epage=231&rft.pages=228-231&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2021.3136966&rft_dat=%3Cproquest_ieee_%3E2623470398%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-8d799e5618f3d515c0aac24c24d12a50b472c726adb968931562d6953241292c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623470398&rft_id=info:pmid/&rft_ieee_id=9656757&rfr_iscdi=true |