Loading…

A Blind Background Calibration Technique for Super-Regenerative Receivers

In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance ( {\mathrm {-}\mathrm {G}}_{\mathrm {m}} ) variations un...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-02, Vol.69 (2), p.344-348
Main Authors: Fu, Ximing, El-Sankary, Kamal, Ge, Yang, Yin, Yadong, Truhachev, Dmitri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043
container_end_page 348
container_issue 2
container_start_page 344
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 69
creator Fu, Ximing
El-Sankary, Kamal
Ge, Yang
Yin, Yadong
Truhachev, Dmitri
description In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance ( {\mathrm {-}\mathrm {G}}_{\mathrm {m}} ) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground {-\mathrm {G}}_{\mathrm {m}} variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners.
doi_str_mv 10.1109/TCSII.2021.3095115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623470809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9475477</ieee_id><sourcerecordid>2623470809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDnFv7F9bCMKkSohtblbjrMuKSUpdoPE25PQitPMYWZ29SF0T_CMEKyfynxTFDOKKZkxrAUh4gJNiBAqZVKTy9FznUrJ5TW6iXGHMdWY0Qkq5sli37R1srDuYxu6frC53TdVsMema5MS3HvbfPWQ-C4km_4AIV3DFloYA9-QrMHBoCHeoitv9xHuzjpF5fK5zF_T1dtLkc9XqaM8O6bEW50pLjyVGfdaVsoxyT0lWgulPNRKK-58rXgtbQaYKi0qqATnUjnM2RQ9nmYPoRveikez6_rQDhcNzSjjEiushxQ9pVzoYgzgzSE0nzb8GILNSMz8ETMjMXMmNpQeTqUGAP4LmkvBpWS_rehmmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470809</pqid></control><display><type>article</type><title>A Blind Background Calibration Technique for Super-Regenerative Receivers</title><source>IEEE Xplore (Online service)</source><creator>Fu, Ximing ; El-Sankary, Kamal ; Ge, Yang ; Yin, Yadong ; Truhachev, Dmitri</creator><creatorcontrib>Fu, Ximing ; El-Sankary, Kamal ; Ge, Yang ; Yin, Yadong ; Truhachev, Dmitri</creatorcontrib><description><![CDATA[In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance (<inline-formula> <tex-math notation="LaTeX">{\mathrm {-}\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula>) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground <inline-formula> <tex-math notation="LaTeX">{-\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula> variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2021.3095115</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; blind calibration ; Calibration ; Circuits ; current steering DAC ; envelope detector ; Estimation ; Finite state machines ; Interruption ; offset cancelation ; Probability distribution ; Pseudorandom ; PVT variations ; Receivers ; Sensitivity ; Signal detection ; Super-regenerative receiver ; system offset ; Time-frequency analysis ; Transconductance</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2022-02, Vol.69 (2), p.344-348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043</cites><orcidid>0000-0002-1788-2607 ; 0000-0001-8104-6913 ; 0000-0003-4900-8348 ; 0000-0002-4455-3825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9475477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fu, Ximing</creatorcontrib><creatorcontrib>El-Sankary, Kamal</creatorcontrib><creatorcontrib>Ge, Yang</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><creatorcontrib>Truhachev, Dmitri</creatorcontrib><title>A Blind Background Calibration Technique for Super-Regenerative Receivers</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance (<inline-formula> <tex-math notation="LaTeX">{\mathrm {-}\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula>) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground <inline-formula> <tex-math notation="LaTeX">{-\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula> variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners.]]></description><subject>Adaptive algorithms</subject><subject>blind calibration</subject><subject>Calibration</subject><subject>Circuits</subject><subject>current steering DAC</subject><subject>envelope detector</subject><subject>Estimation</subject><subject>Finite state machines</subject><subject>Interruption</subject><subject>offset cancelation</subject><subject>Probability distribution</subject><subject>Pseudorandom</subject><subject>PVT variations</subject><subject>Receivers</subject><subject>Sensitivity</subject><subject>Signal detection</subject><subject>Super-regenerative receiver</subject><subject>system offset</subject><subject>Time-frequency analysis</subject><subject>Transconductance</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDnFv7F9bCMKkSohtblbjrMuKSUpdoPE25PQitPMYWZ29SF0T_CMEKyfynxTFDOKKZkxrAUh4gJNiBAqZVKTy9FznUrJ5TW6iXGHMdWY0Qkq5sli37R1srDuYxu6frC53TdVsMema5MS3HvbfPWQ-C4km_4AIV3DFloYA9-QrMHBoCHeoitv9xHuzjpF5fK5zF_T1dtLkc9XqaM8O6bEW50pLjyVGfdaVsoxyT0lWgulPNRKK-58rXgtbQaYKi0qqATnUjnM2RQ9nmYPoRveikez6_rQDhcNzSjjEiushxQ9pVzoYgzgzSE0nzb8GILNSMz8ETMjMXMmNpQeTqUGAP4LmkvBpWS_rehmmA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Fu, Ximing</creator><creator>El-Sankary, Kamal</creator><creator>Ge, Yang</creator><creator>Yin, Yadong</creator><creator>Truhachev, Dmitri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1788-2607</orcidid><orcidid>https://orcid.org/0000-0001-8104-6913</orcidid><orcidid>https://orcid.org/0000-0003-4900-8348</orcidid><orcidid>https://orcid.org/0000-0002-4455-3825</orcidid></search><sort><creationdate>20220201</creationdate><title>A Blind Background Calibration Technique for Super-Regenerative Receivers</title><author>Fu, Ximing ; El-Sankary, Kamal ; Ge, Yang ; Yin, Yadong ; Truhachev, Dmitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>blind calibration</topic><topic>Calibration</topic><topic>Circuits</topic><topic>current steering DAC</topic><topic>envelope detector</topic><topic>Estimation</topic><topic>Finite state machines</topic><topic>Interruption</topic><topic>offset cancelation</topic><topic>Probability distribution</topic><topic>Pseudorandom</topic><topic>PVT variations</topic><topic>Receivers</topic><topic>Sensitivity</topic><topic>Signal detection</topic><topic>Super-regenerative receiver</topic><topic>system offset</topic><topic>Time-frequency analysis</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Ximing</creatorcontrib><creatorcontrib>El-Sankary, Kamal</creatorcontrib><creatorcontrib>Ge, Yang</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><creatorcontrib>Truhachev, Dmitri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Ximing</au><au>El-Sankary, Kamal</au><au>Ge, Yang</au><au>Yin, Yadong</au><au>Truhachev, Dmitri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Blind Background Calibration Technique for Super-Regenerative Receivers</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>344</spage><epage>348</epage><pages>344-348</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract><![CDATA[In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance (<inline-formula> <tex-math notation="LaTeX">{\mathrm {-}\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula>) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground <inline-formula> <tex-math notation="LaTeX">{-\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula> variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2021.3095115</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1788-2607</orcidid><orcidid>https://orcid.org/0000-0001-8104-6913</orcidid><orcidid>https://orcid.org/0000-0003-4900-8348</orcidid><orcidid>https://orcid.org/0000-0002-4455-3825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2022-02, Vol.69 (2), p.344-348
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2623470809
source IEEE Xplore (Online service)
subjects Adaptive algorithms
blind calibration
Calibration
Circuits
current steering DAC
envelope detector
Estimation
Finite state machines
Interruption
offset cancelation
Probability distribution
Pseudorandom
PVT variations
Receivers
Sensitivity
Signal detection
Super-regenerative receiver
system offset
Time-frequency analysis
Transconductance
title A Blind Background Calibration Technique for Super-Regenerative Receivers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Blind%20Background%20Calibration%20Technique%20for%20Super-Regenerative%20Receivers&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Fu,%20Ximing&rft.date=2022-02-01&rft.volume=69&rft.issue=2&rft.spage=344&rft.epage=348&rft.pages=344-348&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2021.3095115&rft_dat=%3Cproquest_cross%3E2623470809%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623470809&rft_id=info:pmid/&rft_ieee_id=9475477&rfr_iscdi=true