Loading…
A Blind Background Calibration Technique for Super-Regenerative Receivers
In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance ( {\mathrm {-}\mathrm {G}}_{\mathrm {m}} ) variations un...
Saved in:
Published in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-02, Vol.69 (2), p.344-348 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043 |
container_end_page | 348 |
container_issue | 2 |
container_start_page | 344 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 69 |
creator | Fu, Ximing El-Sankary, Kamal Ge, Yang Yin, Yadong Truhachev, Dmitri |
description | In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance ( {\mathrm {-}\mathrm {G}}_{\mathrm {m}} ) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground {-\mathrm {G}}_{\mathrm {m}} variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners. |
doi_str_mv | 10.1109/TCSII.2021.3095115 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623470809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9475477</ieee_id><sourcerecordid>2623470809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDnFv7F9bCMKkSohtblbjrMuKSUpdoPE25PQitPMYWZ29SF0T_CMEKyfynxTFDOKKZkxrAUh4gJNiBAqZVKTy9FznUrJ5TW6iXGHMdWY0Qkq5sli37R1srDuYxu6frC53TdVsMema5MS3HvbfPWQ-C4km_4AIV3DFloYA9-QrMHBoCHeoitv9xHuzjpF5fK5zF_T1dtLkc9XqaM8O6bEW50pLjyVGfdaVsoxyT0lWgulPNRKK-58rXgtbQaYKi0qqATnUjnM2RQ9nmYPoRveikez6_rQDhcNzSjjEiushxQ9pVzoYgzgzSE0nzb8GILNSMz8ETMjMXMmNpQeTqUGAP4LmkvBpWS_rehmmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470809</pqid></control><display><type>article</type><title>A Blind Background Calibration Technique for Super-Regenerative Receivers</title><source>IEEE Xplore (Online service)</source><creator>Fu, Ximing ; El-Sankary, Kamal ; Ge, Yang ; Yin, Yadong ; Truhachev, Dmitri</creator><creatorcontrib>Fu, Ximing ; El-Sankary, Kamal ; Ge, Yang ; Yin, Yadong ; Truhachev, Dmitri</creatorcontrib><description><![CDATA[In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance (<inline-formula> <tex-math notation="LaTeX">{\mathrm {-}\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula>) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground <inline-formula> <tex-math notation="LaTeX">{-\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula> variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2021.3095115</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; blind calibration ; Calibration ; Circuits ; current steering DAC ; envelope detector ; Estimation ; Finite state machines ; Interruption ; offset cancelation ; Probability distribution ; Pseudorandom ; PVT variations ; Receivers ; Sensitivity ; Signal detection ; Super-regenerative receiver ; system offset ; Time-frequency analysis ; Transconductance</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2022-02, Vol.69 (2), p.344-348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043</cites><orcidid>0000-0002-1788-2607 ; 0000-0001-8104-6913 ; 0000-0003-4900-8348 ; 0000-0002-4455-3825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9475477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fu, Ximing</creatorcontrib><creatorcontrib>El-Sankary, Kamal</creatorcontrib><creatorcontrib>Ge, Yang</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><creatorcontrib>Truhachev, Dmitri</creatorcontrib><title>A Blind Background Calibration Technique for Super-Regenerative Receivers</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance (<inline-formula> <tex-math notation="LaTeX">{\mathrm {-}\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula>) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground <inline-formula> <tex-math notation="LaTeX">{-\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula> variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners.]]></description><subject>Adaptive algorithms</subject><subject>blind calibration</subject><subject>Calibration</subject><subject>Circuits</subject><subject>current steering DAC</subject><subject>envelope detector</subject><subject>Estimation</subject><subject>Finite state machines</subject><subject>Interruption</subject><subject>offset cancelation</subject><subject>Probability distribution</subject><subject>Pseudorandom</subject><subject>PVT variations</subject><subject>Receivers</subject><subject>Sensitivity</subject><subject>Signal detection</subject><subject>Super-regenerative receiver</subject><subject>system offset</subject><subject>Time-frequency analysis</subject><subject>Transconductance</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDnFv7F9bCMKkSohtblbjrMuKSUpdoPE25PQitPMYWZ29SF0T_CMEKyfynxTFDOKKZkxrAUh4gJNiBAqZVKTy9FznUrJ5TW6iXGHMdWY0Qkq5sli37R1srDuYxu6frC53TdVsMema5MS3HvbfPWQ-C4km_4AIV3DFloYA9-QrMHBoCHeoitv9xHuzjpF5fK5zF_T1dtLkc9XqaM8O6bEW50pLjyVGfdaVsoxyT0lWgulPNRKK-58rXgtbQaYKi0qqATnUjnM2RQ9nmYPoRveikez6_rQDhcNzSjjEiushxQ9pVzoYgzgzSE0nzb8GILNSMz8ETMjMXMmNpQeTqUGAP4LmkvBpWS_rehmmA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Fu, Ximing</creator><creator>El-Sankary, Kamal</creator><creator>Ge, Yang</creator><creator>Yin, Yadong</creator><creator>Truhachev, Dmitri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1788-2607</orcidid><orcidid>https://orcid.org/0000-0001-8104-6913</orcidid><orcidid>https://orcid.org/0000-0003-4900-8348</orcidid><orcidid>https://orcid.org/0000-0002-4455-3825</orcidid></search><sort><creationdate>20220201</creationdate><title>A Blind Background Calibration Technique for Super-Regenerative Receivers</title><author>Fu, Ximing ; El-Sankary, Kamal ; Ge, Yang ; Yin, Yadong ; Truhachev, Dmitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>blind calibration</topic><topic>Calibration</topic><topic>Circuits</topic><topic>current steering DAC</topic><topic>envelope detector</topic><topic>Estimation</topic><topic>Finite state machines</topic><topic>Interruption</topic><topic>offset cancelation</topic><topic>Probability distribution</topic><topic>Pseudorandom</topic><topic>PVT variations</topic><topic>Receivers</topic><topic>Sensitivity</topic><topic>Signal detection</topic><topic>Super-regenerative receiver</topic><topic>system offset</topic><topic>Time-frequency analysis</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Ximing</creatorcontrib><creatorcontrib>El-Sankary, Kamal</creatorcontrib><creatorcontrib>Ge, Yang</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><creatorcontrib>Truhachev, Dmitri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Ximing</au><au>El-Sankary, Kamal</au><au>Ge, Yang</au><au>Yin, Yadong</au><au>Truhachev, Dmitri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Blind Background Calibration Technique for Super-Regenerative Receivers</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>344</spage><epage>348</epage><pages>344-348</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract><![CDATA[In this brief, a blind background calibration technique for super-regenerative receivers (SRRs) is presented. The proposed calibration scheme is designed to help SRRs to maintain their high sensitivity and immunity to negative transconductance (<inline-formula> <tex-math notation="LaTeX">{\mathrm {-}\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula>) variations under process-voltage- temperature (PVT) variations. Unlike the conventional foreground <inline-formula> <tex-math notation="LaTeX">{-\mathrm {G}}_{\mathrm {m}} </tex-math></inline-formula> variations calibration techniques that require interruption of the receiver input, the proposed calibration technique employs input signal statistics and does not require interruption of the input bit-stream for extraction of the errors. The proposed scheme is based on an adaptive algorithm that compares the probability distribution of the pseudorandom-input (PI) stream and the output of the super-regenerative oscillator (SRO) and forces them to coincide at the end of the calibration. The proposed technique is implemented using a mixed-signal detection circuit and a finite state machine (FSM) that drives an 8-bit successive approximation register (SAR) to adjust the compensation current in the SRO. The simulation results successfully verify the effectiveness and reliability of the proposed calibration technique and show significant improvements in terms of SRR sensitivity under different process corners.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2021.3095115</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1788-2607</orcidid><orcidid>https://orcid.org/0000-0001-8104-6913</orcidid><orcidid>https://orcid.org/0000-0003-4900-8348</orcidid><orcidid>https://orcid.org/0000-0002-4455-3825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2022-02, Vol.69 (2), p.344-348 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2623470809 |
source | IEEE Xplore (Online service) |
subjects | Adaptive algorithms blind calibration Calibration Circuits current steering DAC envelope detector Estimation Finite state machines Interruption offset cancelation Probability distribution Pseudorandom PVT variations Receivers Sensitivity Signal detection Super-regenerative receiver system offset Time-frequency analysis Transconductance |
title | A Blind Background Calibration Technique for Super-Regenerative Receivers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Blind%20Background%20Calibration%20Technique%20for%20Super-Regenerative%20Receivers&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Fu,%20Ximing&rft.date=2022-02-01&rft.volume=69&rft.issue=2&rft.spage=344&rft.epage=348&rft.pages=344-348&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2021.3095115&rft_dat=%3Cproquest_cross%3E2623470809%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-1fa96845f2764f97b8c374f2199588fed8984cfd84d7a6e02895beb54478c043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623470809&rft_id=info:pmid/&rft_ieee_id=9475477&rfr_iscdi=true |