Loading…
Virtual pruning of 3D trees as a tool for managing shading effects in agroforestry systems
Light is a limiting resource for crops within integrated land use systems especially those including woody perennials. The amount of available light at ground level can be modified by artificially pruning the overstory. Aiming to increase the understanding of light management strategies, we simulate...
Saved in:
Published in: | Agroforestry systems 2022, Vol.96 (1), p.89-104 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Light is a limiting resource for crops within integrated land use systems especially those including woody perennials. The amount of available light at ground level can be modified by artificially pruning the overstory. Aiming to increase the understanding of light management strategies, we simulated the pruning of wild cherry trees and compared the shading effects of the resulting tree structures over a complete growing season, with fine spatiotemporal resolution. Original 3D-tree structures were retrieved employing terrestrial laser scanning and quantitative structure models, and subjected to two pruning treatments at low and high intensities. By using the ‘shadow model’, the analogous tree structures created diverse shaded scenarios varying in size and intensity of insolation reduction. Conventional pruning treatments reduced the crown structure to the uppermost portion of the tree bole, reducing the shading effects, and thus, shrinking the shaded area on the ground by up to 38%, together with the shading intensity. As an alternative, the selective removal of branches reduced the shading effects, while keeping a more similar spatial distribution compared to the unpruned tree. Hence, the virtual pruning of tree structures can support designing and selecting adequate tending operations for the management of light distribution in agroforestry systems. The evidence assembled in this study is highly relevant for agroecosystems and can be strategically used for maintaining, planning and designing integrated tree-crop agricultural systems. |
---|---|
ISSN: | 0167-4366 1572-9680 |
DOI: | 10.1007/s10457-021-00697-5 |