Loading…
Learning multi-level and multi-scale deep representations for privacy image classification
Privacy image classification can help people detect privacy images when people share images. In this paper, we propose a novel method using multi-level and multi-scale features for privacy image classification. We first use CNN (Convolutional Neural Network) to extract multi-levels features. Then, m...
Saved in:
Published in: | Multimedia tools and applications 2022, Vol.81 (2), p.2259-2274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-443b20a25ff1652700bc62033470e62e25d5db660bceb8b67db8d950c1852aea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-443b20a25ff1652700bc62033470e62e25d5db660bceb8b67db8d950c1852aea3 |
container_end_page | 2274 |
container_issue | 2 |
container_start_page | 2259 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Han, Yahui Huang, Yonggang Pan, Lei Zheng, Yunbo |
description | Privacy image classification can help people detect privacy images when people share images. In this paper, we propose a novel method using multi-level and multi-scale features for privacy image classification. We first use CNN (Convolutional Neural Network) to extract multi-levels features. Then, max-pooling layers are employed to obtain multi-scale features at each level. Finally, we propose two feature aggregation models, called Privacy-MSML and Privacy-MLMS to fuse those features for image privacy classification. In Privacy-MSML, multi-scale features of the same level are first integrated and then the integrated features are fused. In Privacy-MLMS, multi-level features of the same scale are first integrated and then the integrated features are fused. Our experiments on a real-world dataset demonstrate the proposed method can achieve better performance compared with the state-of-the-art solutions. |
doi_str_mv | 10.1007/s11042-021-11667-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623631224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623631224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-443b20a25ff1652700bc62033470e62e25d5db660bceb8b67db8d950c1852aea3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmSTTpRRfUHCjGzchk7lTUqYzYzIt9N8bOwV3ru6D79x7OITccrjnAOYhcQ6FYCA441xrw9QZmXFlJDNG8PPcyxKYUcAvyVVKGwCulShm5GuFLnahW9Ptrh0Da3GPLXVdfZqTdy3SGnGgEYeICbvRjaHvEm36SIcY9s4faNi6NVLfupRCE_yRuCYXjWsT3pzqnHw-P30sX9nq_eVt-bhiXvLFyIpCVgKcUE3z68kAVF4LkLIwgFqgULWqK63zGquy0qauynqhwPNSCYdOzsnddHeI_fcO02g3_S52-aUVWkgtuRBFpsRE-dinFLGx2fvWxYPlYH8ztFOGNmdojxlalUVyEqUMd2uMf6f_Uf0AzRZ07Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623631224</pqid></control><display><type>article</type><title>Learning multi-level and multi-scale deep representations for privacy image classification</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Han, Yahui ; Huang, Yonggang ; Pan, Lei ; Zheng, Yunbo</creator><creatorcontrib>Han, Yahui ; Huang, Yonggang ; Pan, Lei ; Zheng, Yunbo</creatorcontrib><description>Privacy image classification can help people detect privacy images when people share images. In this paper, we propose a novel method using multi-level and multi-scale features for privacy image classification. We first use CNN (Convolutional Neural Network) to extract multi-levels features. Then, max-pooling layers are employed to obtain multi-scale features at each level. Finally, we propose two feature aggregation models, called Privacy-MSML and Privacy-MLMS to fuse those features for image privacy classification. In Privacy-MSML, multi-scale features of the same level are first integrated and then the integrated features are fused. In Privacy-MLMS, multi-level features of the same scale are first integrated and then the integrated features are fused. Our experiments on a real-world dataset demonstrate the proposed method can achieve better performance compared with the state-of-the-art solutions.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-11667-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Classification ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Feature extraction ; Image classification ; Multimedia Information Systems ; Privacy ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022, Vol.81 (2), p.2259-2274</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-443b20a25ff1652700bc62033470e62e25d5db660bceb8b67db8d950c1852aea3</citedby><cites>FETCH-LOGICAL-c319t-443b20a25ff1652700bc62033470e62e25d5db660bceb8b67db8d950c1852aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2623631224/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2623631224?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Han, Yahui</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Zheng, Yunbo</creatorcontrib><title>Learning multi-level and multi-scale deep representations for privacy image classification</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Privacy image classification can help people detect privacy images when people share images. In this paper, we propose a novel method using multi-level and multi-scale features for privacy image classification. We first use CNN (Convolutional Neural Network) to extract multi-levels features. Then, max-pooling layers are employed to obtain multi-scale features at each level. Finally, we propose two feature aggregation models, called Privacy-MSML and Privacy-MLMS to fuse those features for image privacy classification. In Privacy-MSML, multi-scale features of the same level are first integrated and then the integrated features are fused. In Privacy-MLMS, multi-level features of the same scale are first integrated and then the integrated features are fused. Our experiments on a real-world dataset demonstrate the proposed method can achieve better performance compared with the state-of-the-art solutions.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Multimedia Information Systems</subject><subject>Privacy</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmSTTpRRfUHCjGzchk7lTUqYzYzIt9N8bOwV3ru6D79x7OITccrjnAOYhcQ6FYCA441xrw9QZmXFlJDNG8PPcyxKYUcAvyVVKGwCulShm5GuFLnahW9Ptrh0Da3GPLXVdfZqTdy3SGnGgEYeICbvRjaHvEm36SIcY9s4faNi6NVLfupRCE_yRuCYXjWsT3pzqnHw-P30sX9nq_eVt-bhiXvLFyIpCVgKcUE3z68kAVF4LkLIwgFqgULWqK63zGquy0qauynqhwPNSCYdOzsnddHeI_fcO02g3_S52-aUVWkgtuRBFpsRE-dinFLGx2fvWxYPlYH8ztFOGNmdojxlalUVyEqUMd2uMf6f_Uf0AzRZ07Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Han, Yahui</creator><creator>Huang, Yonggang</creator><creator>Pan, Lei</creator><creator>Zheng, Yunbo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>Learning multi-level and multi-scale deep representations for privacy image classification</title><author>Han, Yahui ; Huang, Yonggang ; Pan, Lei ; Zheng, Yunbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-443b20a25ff1652700bc62033470e62e25d5db660bceb8b67db8d950c1852aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Multimedia Information Systems</topic><topic>Privacy</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yahui</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Zheng, Yunbo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yahui</au><au>Huang, Yonggang</au><au>Pan, Lei</au><au>Zheng, Yunbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning multi-level and multi-scale deep representations for privacy image classification</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022</date><risdate>2022</risdate><volume>81</volume><issue>2</issue><spage>2259</spage><epage>2274</epage><pages>2259-2274</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Privacy image classification can help people detect privacy images when people share images. In this paper, we propose a novel method using multi-level and multi-scale features for privacy image classification. We first use CNN (Convolutional Neural Network) to extract multi-levels features. Then, max-pooling layers are employed to obtain multi-scale features at each level. Finally, we propose two feature aggregation models, called Privacy-MSML and Privacy-MLMS to fuse those features for image privacy classification. In Privacy-MSML, multi-scale features of the same level are first integrated and then the integrated features are fused. In Privacy-MLMS, multi-level features of the same scale are first integrated and then the integrated features are fused. Our experiments on a real-world dataset demonstrate the proposed method can achieve better performance compared with the state-of-the-art solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-11667-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022, Vol.81 (2), p.2259-2274 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2623631224 |
source | ABI/INFORM Global; Springer Link |
subjects | Artificial neural networks Classification Computer Communication Networks Computer Science Data Structures and Information Theory Feature extraction Image classification Multimedia Information Systems Privacy Special Purpose and Application-Based Systems |
title | Learning multi-level and multi-scale deep representations for privacy image classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20multi-level%20and%20multi-scale%20deep%20representations%20for%20privacy%20image%20classification&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Han,%20Yahui&rft.date=2022&rft.volume=81&rft.issue=2&rft.spage=2259&rft.epage=2274&rft.pages=2259-2274&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-11667-5&rft_dat=%3Cproquest_cross%3E2623631224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-443b20a25ff1652700bc62033470e62e25d5db660bceb8b67db8d950c1852aea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623631224&rft_id=info:pmid/&rfr_iscdi=true |