Loading…
Structural and Optical Properties of a Hybrid Material Based on Tin Oxides and Multilayer Periodic Structures with Pseudomorphic GeSiSn Layers
A hybrid material including tin oxides on the top of a Ge 0.3 Si 0.7– y Sn y /Si multiple quantum well structure has been first obtained. Tin oxides such as SnO and SnO 2 were formed as a result of phase transitions during the oxidation of polycrystalline tin films (β-Sn). The photoluminescence was...
Saved in:
Published in: | Russian physics journal 2021-12, Vol.64 (8), p.1505-1512 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-67d029b76bd36a71c1bf5d5f3fae1e2d3ea37b1c6fda09d80f7f2372066d98d13 |
container_end_page | 1512 |
container_issue | 8 |
container_start_page | 1505 |
container_title | Russian physics journal |
container_volume | 64 |
creator | Timofeev, V. A. Mashanov, V. I. Nikiforov, A. I. Loshkarev, I. D. Skvortsov, I. V. Gulyaev, D. V. Korolkov, I. V. Kolyada, D. V. Firsov, D. D. Komkov, O. S. |
description | A hybrid material including tin oxides on the top of a Ge
0.3
Si
0.7–
y
Sn
y
/Si multiple quantum well structure has been first obtained. Tin oxides such as SnO and SnO
2
were formed as a result of phase transitions during the oxidation of polycrystalline tin films (β-Sn). The photoluminescence was demonstrated with a maximum intensity at about 2.34 eV, which corresponds to the band gap of SnO. The glow at the photogeneration point is seen in green. The photoluminescence from SnO is observed after the annealing in the temperature range of 300-400 °C. An increase in the annealing temperature leads to a sharp quenching of the photoluminescence. It is associated with the phase transition from SnO to SnO
2
. The growth of Ge
0.3
Si
0.7–
y
Sn
y
/Si multilayer structures is studied at the Sn content from 0 to 18%. It was found that GeSiSn compounds are thermally stable in the annealing temperature range of 300–550°C. In addition to the photoluminescence signal in the visible range from tin oxides, the photoluminescence signal in the infrared range of about 3 μm appears. It is formed from the GeSiSn/Si structure. |
doi_str_mv | 10.1007/s11182-021-02483-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2623727030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695994683</galeid><sourcerecordid>A695994683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-67d029b76bd36a71c1bf5d5f3fae1e2d3ea37b1c6fda09d80f7f2372066d98d13</originalsourceid><addsrcrecordid>eNqNkd9KHDEUh4dioWr7Ar0KeD2aPztJ5lKl1cLKLqy9DpnkRCOzk2mSoe5L-MxmOhXvSgkhh5zvywn8quorwecEY3GRCCGS1piSsleS1exDdUwaweqWUnlUasxXtZRSfKpOUnrCuGhcHFcvuxwnk6eoe6QHizZj9qbU2xhGiNlDQsEhjW4PXfQW3ekM0Zf-lU5gURjQvR_Q5tnbAs7-3dRn3-sDRLQtZLDeoLcRBfnt8yPaJphs2Ic4PpbuDez8bkDr2Umfq49O9wm-_D1Pq5_fv91f39brzc2P68t1bdhK5poLi2nbCd5ZxrUghnSusY1jTgMBahloJjpiuLMat1ZiJxxlgmLObSstYafV2fLuGMOvCVJWT2GKQxmpKJ9JgRku1PlCPegelB9cyFGbsizsvQkDOF_uLwVracMZ_m-Bt03brrhkRaCLYGJIKYJTY_R7HQ-KYDUnq5ZkVUlW_UlWzRJbpFTg4QHi--f_Yb0C7ranug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623727030</pqid></control><display><type>article</type><title>Structural and Optical Properties of a Hybrid Material Based on Tin Oxides and Multilayer Periodic Structures with Pseudomorphic GeSiSn Layers</title><source>Springer Nature</source><creator>Timofeev, V. A. ; Mashanov, V. I. ; Nikiforov, A. I. ; Loshkarev, I. D. ; Skvortsov, I. V. ; Gulyaev, D. V. ; Korolkov, I. V. ; Kolyada, D. V. ; Firsov, D. D. ; Komkov, O. S.</creator><creatorcontrib>Timofeev, V. A. ; Mashanov, V. I. ; Nikiforov, A. I. ; Loshkarev, I. D. ; Skvortsov, I. V. ; Gulyaev, D. V. ; Korolkov, I. V. ; Kolyada, D. V. ; Firsov, D. D. ; Komkov, O. S.</creatorcontrib><description>A hybrid material including tin oxides on the top of a Ge
0.3
Si
0.7–
y
Sn
y
/Si multiple quantum well structure has been first obtained. Tin oxides such as SnO and SnO
2
were formed as a result of phase transitions during the oxidation of polycrystalline tin films (β-Sn). The photoluminescence was demonstrated with a maximum intensity at about 2.34 eV, which corresponds to the band gap of SnO. The glow at the photogeneration point is seen in green. The photoluminescence from SnO is observed after the annealing in the temperature range of 300-400 °C. An increase in the annealing temperature leads to a sharp quenching of the photoluminescence. It is associated with the phase transition from SnO to SnO
2
. The growth of Ge
0.3
Si
0.7–
y
Sn
y
/Si multilayer structures is studied at the Sn content from 0 to 18%. It was found that GeSiSn compounds are thermally stable in the annealing temperature range of 300–550°C. In addition to the photoluminescence signal in the visible range from tin oxides, the photoluminescence signal in the infrared range of about 3 μm appears. It is formed from the GeSiSn/Si structure.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-021-02483-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Condensed Matter Physics ; Epitaxy ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Multi Quantum Wells ; Multilayers ; Nuclear Physics ; Optical Devices ; Optical properties ; Optics ; Oxidation ; Oxides ; Periodic structures ; Phase transitions ; Photoluminescence ; Photonics ; Physics ; Physics and Astronomy ; Physics of Semiconductors and Dielectrics ; Quantum wells ; Silicon ; Theoretical ; Thermal stability ; Tin ; Tin dioxide ; Tin oxides</subject><ispartof>Russian physics journal, 2021-12, Vol.64 (8), p.1505-1512</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-67d029b76bd36a71c1bf5d5f3fae1e2d3ea37b1c6fda09d80f7f2372066d98d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Timofeev, V. A.</creatorcontrib><creatorcontrib>Mashanov, V. I.</creatorcontrib><creatorcontrib>Nikiforov, A. I.</creatorcontrib><creatorcontrib>Loshkarev, I. D.</creatorcontrib><creatorcontrib>Skvortsov, I. V.</creatorcontrib><creatorcontrib>Gulyaev, D. V.</creatorcontrib><creatorcontrib>Korolkov, I. V.</creatorcontrib><creatorcontrib>Kolyada, D. V.</creatorcontrib><creatorcontrib>Firsov, D. D.</creatorcontrib><creatorcontrib>Komkov, O. S.</creatorcontrib><title>Structural and Optical Properties of a Hybrid Material Based on Tin Oxides and Multilayer Periodic Structures with Pseudomorphic GeSiSn Layers</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>A hybrid material including tin oxides on the top of a Ge
0.3
Si
0.7–
y
Sn
y
/Si multiple quantum well structure has been first obtained. Tin oxides such as SnO and SnO
2
were formed as a result of phase transitions during the oxidation of polycrystalline tin films (β-Sn). The photoluminescence was demonstrated with a maximum intensity at about 2.34 eV, which corresponds to the band gap of SnO. The glow at the photogeneration point is seen in green. The photoluminescence from SnO is observed after the annealing in the temperature range of 300-400 °C. An increase in the annealing temperature leads to a sharp quenching of the photoluminescence. It is associated with the phase transition from SnO to SnO
2
. The growth of Ge
0.3
Si
0.7–
y
Sn
y
/Si multilayer structures is studied at the Sn content from 0 to 18%. It was found that GeSiSn compounds are thermally stable in the annealing temperature range of 300–550°C. In addition to the photoluminescence signal in the visible range from tin oxides, the photoluminescence signal in the infrared range of about 3 μm appears. It is formed from the GeSiSn/Si structure.</description><subject>Annealing</subject><subject>Condensed Matter Physics</subject><subject>Epitaxy</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Multi Quantum Wells</subject><subject>Multilayers</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Periodic structures</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Semiconductors and Dielectrics</subject><subject>Quantum wells</subject><subject>Silicon</subject><subject>Theoretical</subject><subject>Thermal stability</subject><subject>Tin</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkd9KHDEUh4dioWr7Ar0KeD2aPztJ5lKl1cLKLqy9DpnkRCOzk2mSoe5L-MxmOhXvSgkhh5zvywn8quorwecEY3GRCCGS1piSsleS1exDdUwaweqWUnlUasxXtZRSfKpOUnrCuGhcHFcvuxwnk6eoe6QHizZj9qbU2xhGiNlDQsEhjW4PXfQW3ekM0Zf-lU5gURjQvR_Q5tnbAs7-3dRn3-sDRLQtZLDeoLcRBfnt8yPaJphs2Ic4PpbuDez8bkDr2Umfq49O9wm-_D1Pq5_fv91f39brzc2P68t1bdhK5poLi2nbCd5ZxrUghnSusY1jTgMBahloJjpiuLMat1ZiJxxlgmLObSstYafV2fLuGMOvCVJWT2GKQxmpKJ9JgRku1PlCPegelB9cyFGbsizsvQkDOF_uLwVracMZ_m-Bt03brrhkRaCLYGJIKYJTY_R7HQ-KYDUnq5ZkVUlW_UlWzRJbpFTg4QHi--f_Yb0C7ranug</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Timofeev, V. A.</creator><creator>Mashanov, V. I.</creator><creator>Nikiforov, A. I.</creator><creator>Loshkarev, I. D.</creator><creator>Skvortsov, I. V.</creator><creator>Gulyaev, D. V.</creator><creator>Korolkov, I. V.</creator><creator>Kolyada, D. V.</creator><creator>Firsov, D. D.</creator><creator>Komkov, O. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Structural and Optical Properties of a Hybrid Material Based on Tin Oxides and Multilayer Periodic Structures with Pseudomorphic GeSiSn Layers</title><author>Timofeev, V. A. ; Mashanov, V. I. ; Nikiforov, A. I. ; Loshkarev, I. D. ; Skvortsov, I. V. ; Gulyaev, D. V. ; Korolkov, I. V. ; Kolyada, D. V. ; Firsov, D. D. ; Komkov, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-67d029b76bd36a71c1bf5d5f3fae1e2d3ea37b1c6fda09d80f7f2372066d98d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Condensed Matter Physics</topic><topic>Epitaxy</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Multi Quantum Wells</topic><topic>Multilayers</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Periodic structures</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Semiconductors and Dielectrics</topic><topic>Quantum wells</topic><topic>Silicon</topic><topic>Theoretical</topic><topic>Thermal stability</topic><topic>Tin</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timofeev, V. A.</creatorcontrib><creatorcontrib>Mashanov, V. I.</creatorcontrib><creatorcontrib>Nikiforov, A. I.</creatorcontrib><creatorcontrib>Loshkarev, I. D.</creatorcontrib><creatorcontrib>Skvortsov, I. V.</creatorcontrib><creatorcontrib>Gulyaev, D. V.</creatorcontrib><creatorcontrib>Korolkov, I. V.</creatorcontrib><creatorcontrib>Kolyada, D. V.</creatorcontrib><creatorcontrib>Firsov, D. D.</creatorcontrib><creatorcontrib>Komkov, O. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timofeev, V. A.</au><au>Mashanov, V. I.</au><au>Nikiforov, A. I.</au><au>Loshkarev, I. D.</au><au>Skvortsov, I. V.</au><au>Gulyaev, D. V.</au><au>Korolkov, I. V.</au><au>Kolyada, D. V.</au><au>Firsov, D. D.</au><au>Komkov, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Optical Properties of a Hybrid Material Based on Tin Oxides and Multilayer Periodic Structures with Pseudomorphic GeSiSn Layers</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>64</volume><issue>8</issue><spage>1505</spage><epage>1512</epage><pages>1505-1512</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>A hybrid material including tin oxides on the top of a Ge
0.3
Si
0.7–
y
Sn
y
/Si multiple quantum well structure has been first obtained. Tin oxides such as SnO and SnO
2
were formed as a result of phase transitions during the oxidation of polycrystalline tin films (β-Sn). The photoluminescence was demonstrated with a maximum intensity at about 2.34 eV, which corresponds to the band gap of SnO. The glow at the photogeneration point is seen in green. The photoluminescence from SnO is observed after the annealing in the temperature range of 300-400 °C. An increase in the annealing temperature leads to a sharp quenching of the photoluminescence. It is associated with the phase transition from SnO to SnO
2
. The growth of Ge
0.3
Si
0.7–
y
Sn
y
/Si multilayer structures is studied at the Sn content from 0 to 18%. It was found that GeSiSn compounds are thermally stable in the annealing temperature range of 300–550°C. In addition to the photoluminescence signal in the visible range from tin oxides, the photoluminescence signal in the infrared range of about 3 μm appears. It is formed from the GeSiSn/Si structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-021-02483-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2021-12, Vol.64 (8), p.1505-1512 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_2623727030 |
source | Springer Nature |
subjects | Annealing Condensed Matter Physics Epitaxy Hadrons Heavy Ions Lasers Mathematical and Computational Physics Multi Quantum Wells Multilayers Nuclear Physics Optical Devices Optical properties Optics Oxidation Oxides Periodic structures Phase transitions Photoluminescence Photonics Physics Physics and Astronomy Physics of Semiconductors and Dielectrics Quantum wells Silicon Theoretical Thermal stability Tin Tin dioxide Tin oxides |
title | Structural and Optical Properties of a Hybrid Material Based on Tin Oxides and Multilayer Periodic Structures with Pseudomorphic GeSiSn Layers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Optical%20Properties%20of%20a%20Hybrid%20Material%20Based%20on%20Tin%20Oxides%20and%20Multilayer%20Periodic%20Structures%20with%20Pseudomorphic%20GeSiSn%20Layers&rft.jtitle=Russian%20physics%20journal&rft.au=Timofeev,%20V.%20A.&rft.date=2021-12-01&rft.volume=64&rft.issue=8&rft.spage=1505&rft.epage=1512&rft.pages=1505-1512&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-021-02483-3&rft_dat=%3Cgale_proqu%3EA695994683%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-67d029b76bd36a71c1bf5d5f3fae1e2d3ea37b1c6fda09d80f7f2372066d98d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623727030&rft_id=info:pmid/&rft_galeid=A695994683&rfr_iscdi=true |