Loading…
Consequences of migratory strategy on habitat selection by mule deer
Ungulate behavior is often characterized as balancing selection for forage and avoidance of predation risk. Within partially migratory ungulate populations, this balancing occurs across multiple spatial scales, potentially resulting in different exposure to costs and benefits between migrants and re...
Saved in:
Published in: | The Journal of wildlife management 2022-01, Vol.86 (1), p.1-25 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ungulate behavior is often characterized as balancing selection for forage and avoidance of predation risk. Within partially migratory ungulate populations, this balancing occurs across multiple spatial scales, potentially resulting in different exposure to costs and benefits between migrants and residents. We assessed how availability and selection of forage and risk from predators varied between summer ranges of migrant and resident mule deer (Odocoileus hemionus; a species in which individual migratory strategies are generally fixed for life) in 3 study areas in western Montana, USA, during summers 2017–2019. We hypothesized that mule deer would face a tradeoff between selecting forage and avoiding predation risk, and that migration and residency would pose contrasting availability of forage and risk at a broad (summer range) spatial scale. We hypothesized deer exposed to lower forage at a given spatial scale would compensate for reduced availability by increasing selection of forage at the cost of reduced avoidance of predators, a mechanism whereby migrants and residents could potentially achieve similar exposure to forage despite disparate availability. We compared the availability of forage (kcal/m²) and predation risk from wolves (Canis lupus) and mountain lions (Puma concolor) between summer ranges of each migratory strategy, then assessed how selection for those factors at the home range (second order) and within-home range (third order) scales varied using resource selection functions (RSFs). As forage availability increased among mule deer summer ranges and individual home ranges, selection for forage decreased at the second-order (P = 0.052) and third-order (P = 0.081) scales, respectively, but avoidance of predators varied weakly. In 1 study area, summer range of residents contained lower forage and higher risk than summer range of migrants, but residents compensated for this disadvantage through stronger selection of forage and avoidance of risk at finer spatial scales. In the other 2 study areas, summer range of migrants contained lower forage and higher risk than residents, but migrants did not compensate through stronger selection for beneficial resources. The majority of mule deer in our study system were migratory, though the benefits of migration were unclear, suggesting partial migration may persist in populations even when exposure to forage and predation risk appears unequal between strategies. |
---|---|
ISSN: | 0022-541X 1937-2817 |
DOI: | 10.1002/jwmg.22135 |