Loading…
New moduli components of rank 2 bundles on projective space
We present a new family of monads whose cohomology is a stable rank 2 vector bundle on . We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable...
Saved in:
Published in: | Sbornik. Mathematics 2021-11, Vol.212 (11), p.1503-1552 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c278t-6f68f22d0f497c7e9d90a30db2f6af24a4abc13fb4a2eacd759dddb09f483f223 |
---|---|
cites | cdi_FETCH-LOGICAL-c278t-6f68f22d0f497c7e9d90a30db2f6af24a4abc13fb4a2eacd759dddb09f483f223 |
container_end_page | 1552 |
container_issue | 11 |
container_start_page | 1503 |
container_title | Sbornik. Mathematics |
container_volume | 212 |
creator | Almeida, C. Jardim, M. Tikhomirov, A. S. Tikhomirov, S. A. |
description | We present a new family of monads whose cohomology is a stable rank 2 vector bundle on
. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
Bibliography: 40 titles. |
doi_str_mv | 10.1070/SM9490 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2624239149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624239149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-6f68f22d0f497c7e9d90a30db2f6af24a4abc13fb4a2eacd759dddb09f483f223</originalsourceid><addsrcrecordid>eNpdkEtLxTAQhYMoeL3qbwgK7qqTNE0bXMnFF1x1oa5Dmge0tk1NWsV_b6SC4GoOwzfnDAehYwLnBEq4eH4QTMAOWhHGq4xVQHeTBs6yghO-jw5ibAGgoKRaoctH-4l7b-auwdr3ox_sMEXsHQ5qeMMU1_NgOps2Ax6Db62emg-L46i0PUR7TnXRHv3ONXq9uX7Z3GXbp9v7zdU207Sspow7XjlKDTgmSl1aYQSoHExNHVeOMsVUrUnuaqaoVdqUhTDG1CAcq_J0mK_R6eKbHnifbZxk6-cwpEhJOWU0F4SJRJ0tlA4-xmCdHEPTq_AlCcifYuRSTAJPFrDx45_TP-gb6Zpfaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624239149</pqid></control><display><type>article</type><title>New moduli components of rank 2 bundles on projective space</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Almeida, C. ; Jardim, M. ; Tikhomirov, A. S. ; Tikhomirov, S. A.</creator><creatorcontrib>Almeida, C. ; Jardim, M. ; Tikhomirov, A. S. ; Tikhomirov, S. A.</creatorcontrib><description>We present a new family of monads whose cohomology is a stable rank 2 vector bundle on
. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
Bibliography: 40 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM9490</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Homology ; Infinite series ; instanton bundles ; monads ; rank 2 bundles ; Smoothness</subject><ispartof>Sbornik. Mathematics, 2021-11, Vol.212 (11), p.1503-1552</ispartof><rights>2021 Russian Academy of Sciences (DoM) and London Mathematical Society</rights><rights>Copyright IOP Publishing Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-6f68f22d0f497c7e9d90a30db2f6af24a4abc13fb4a2eacd759dddb09f483f223</citedby><cites>FETCH-LOGICAL-c278t-6f68f22d0f497c7e9d90a30db2f6af24a4abc13fb4a2eacd759dddb09f483f223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Almeida, C.</creatorcontrib><creatorcontrib>Jardim, M.</creatorcontrib><creatorcontrib>Tikhomirov, A. S.</creatorcontrib><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><title>New moduli components of rank 2 bundles on projective space</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>We present a new family of monads whose cohomology is a stable rank 2 vector bundle on
. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
Bibliography: 40 titles.</description><subject>Homology</subject><subject>Infinite series</subject><subject>instanton bundles</subject><subject>monads</subject><subject>rank 2 bundles</subject><subject>Smoothness</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxTAQhYMoeL3qbwgK7qqTNE0bXMnFF1x1oa5Dmge0tk1NWsV_b6SC4GoOwzfnDAehYwLnBEq4eH4QTMAOWhHGq4xVQHeTBs6yghO-jw5ibAGgoKRaoctH-4l7b-auwdr3ox_sMEXsHQ5qeMMU1_NgOps2Ax6Db62emg-L46i0PUR7TnXRHv3ONXq9uX7Z3GXbp9v7zdU207Sspow7XjlKDTgmSl1aYQSoHExNHVeOMsVUrUnuaqaoVdqUhTDG1CAcq_J0mK_R6eKbHnifbZxk6-cwpEhJOWU0F4SJRJ0tlA4-xmCdHEPTq_AlCcifYuRSTAJPFrDx45_TP-gb6Zpfaw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Almeida, C.</creator><creator>Jardim, M.</creator><creator>Tikhomirov, A. S.</creator><creator>Tikhomirov, S. A.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>New moduli components of rank 2 bundles on projective space</title><author>Almeida, C. ; Jardim, M. ; Tikhomirov, A. S. ; Tikhomirov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-6f68f22d0f497c7e9d90a30db2f6af24a4abc13fb4a2eacd759dddb09f483f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Homology</topic><topic>Infinite series</topic><topic>instanton bundles</topic><topic>monads</topic><topic>rank 2 bundles</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, C.</creatorcontrib><creatorcontrib>Jardim, M.</creatorcontrib><creatorcontrib>Tikhomirov, A. S.</creatorcontrib><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, C.</au><au>Jardim, M.</au><au>Tikhomirov, A. S.</au><au>Tikhomirov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New moduli components of rank 2 bundles on projective space</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>212</volume><issue>11</issue><spage>1503</spage><epage>1552</epage><pages>1503-1552</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>We present a new family of monads whose cohomology is a stable rank 2 vector bundle on
. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
Bibliography: 40 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM9490</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2021-11, Vol.212 (11), p.1503-1552 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_proquest_journals_2624239149 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Homology Infinite series instanton bundles monads rank 2 bundles Smoothness |
title | New moduli components of rank 2 bundles on projective space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20moduli%20components%20of%20rank%202%20bundles%20on%20projective%20space&rft.jtitle=Sbornik.%20Mathematics&rft.au=Almeida,%20C.&rft.date=2021-11-01&rft.volume=212&rft.issue=11&rft.spage=1503&rft.epage=1552&rft.pages=1503-1552&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM9490&rft_dat=%3Cproquest_iop_j%3E2624239149%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-6f68f22d0f497c7e9d90a30db2f6af24a4abc13fb4a2eacd759dddb09f483f223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624239149&rft_id=info:pmid/&rfr_iscdi=true |