Loading…

Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30

Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO 4 , and CaCl 2 found significant on the basis of emulsifi...

Full description

Saved in:
Bibliographic Details
Published in:Preparative biochemistry & biotechnology 2022, Vol.52 (2), p.171-180
Main Authors: Pardhi, Dimple S., Panchal, Rakeshkumar R., Raval, Vikram H., Rajput, Kiransinh N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443
cites cdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443
container_end_page 180
container_issue 2
container_start_page 171
container_title Preparative biochemistry & biotechnology
container_volume 52
creator Pardhi, Dimple S.
Panchal, Rakeshkumar R.
Raval, Vikram H.
Rajput, Kiransinh N.
description Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO 4 , and CaCl 2 found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR).
doi_str_mv 10.1080/10826068.2021.1922919
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2624481116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624481116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0URB7wCSBL2bCZoey2u9s70EASpEggAWvL7rYjR93twQ9Fw9dTw0yyYJFN-aFzq67qEvKWwZpBDx-w8Bbafs2BszVTnCumXpAzJhu-wkd3gndkVnvolJznfA_AVMf6V-S0ES1XwOUZCT-KKSGXMJiJxm0Jc_iDH3Gh0dPZjaHOdIjzNi5uKZn6mKgNMdfkzVDMUug2xbEO_xR2R79nV8c4x8VkelfvqkFZDpl-buA1eenNlN2b43lBfl19-bm5Wd1-u_66-XS7GholClbZO-EM9J3ovLLgsVjRCseVc42zI-8BpLFGMGB2FDBKp4QFI3xrhWguyPtDX3T2u7pc9Bzy4KYJvcSaNZc9KMk6KRG9_A-9jzUt6E7zlgvRM8ZapOSBGlLMOTmvtynMJu00A73PQj9mofdZ6GMWqHt37F4tbvJJ9bh8BD4egLDgXmfzENM06mJ2U0w-mWUIWTfPz_gLUyCaDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624481116</pqid></control><display><type>article</type><title>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</title><source>Taylor and Francis Science and Technology Collection</source><creator>Pardhi, Dimple S. ; Panchal, Rakeshkumar R. ; Raval, Vikram H. ; Rajput, Kiransinh N.</creator><creatorcontrib>Pardhi, Dimple S. ; Panchal, Rakeshkumar R. ; Raval, Vikram H. ; Rajput, Kiransinh N.</creatorcontrib><description>Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO 4 , and CaCl 2 found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR).</description><identifier>ISSN: 1082-6068</identifier><identifier>EISSN: 1532-2297</identifier><identifier>DOI: 10.1080/10826068.2021.1922919</identifier><identifier>PMID: 34629025</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Acetic acid ; Calcium chloride ; Central composite design ; Chloroform ; Culture Media ; Design of experiments ; Design optimization ; Emulsification ; emulsification index ; Ethyl acetate ; Experimental design ; Fourier analysis ; Fourier transforms ; Indicators and Reagents - chemistry ; Infrared spectroscopy ; lipopeptide ; Methanol ; Micelles ; mineral oil ; Mineral oils ; Peptones ; Plackett-Burman design ; Pseudomonas ; Pseudomonas - metabolism ; Pseudomonas guguanensis D30 ; Regression analysis ; Statistical analysis ; Surface Tension ; Surface-Active Agents - metabolism ; Surfactants ; Yeast ; Yeasts</subject><ispartof>Preparative biochemistry &amp; biotechnology, 2022, Vol.52 (2), p.171-180</ispartof><rights>2021 Taylor &amp; Francis Group, LLC 2021</rights><rights>2021 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</citedby><cites>FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</cites><orcidid>0000-0001-8715-8553 ; 0000-0002-3206-248X ; 0000-0001-8912-1850 ; 0000-0001-8669-8347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34629025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pardhi, Dimple S.</creatorcontrib><creatorcontrib>Panchal, Rakeshkumar R.</creatorcontrib><creatorcontrib>Raval, Vikram H.</creatorcontrib><creatorcontrib>Rajput, Kiransinh N.</creatorcontrib><title>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</title><title>Preparative biochemistry &amp; biotechnology</title><addtitle>Prep Biochem Biotechnol</addtitle><description>Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO 4 , and CaCl 2 found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR).</description><subject>Acetic acid</subject><subject>Calcium chloride</subject><subject>Central composite design</subject><subject>Chloroform</subject><subject>Culture Media</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Emulsification</subject><subject>emulsification index</subject><subject>Ethyl acetate</subject><subject>Experimental design</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Indicators and Reagents - chemistry</subject><subject>Infrared spectroscopy</subject><subject>lipopeptide</subject><subject>Methanol</subject><subject>Micelles</subject><subject>mineral oil</subject><subject>Mineral oils</subject><subject>Peptones</subject><subject>Plackett-Burman design</subject><subject>Pseudomonas</subject><subject>Pseudomonas - metabolism</subject><subject>Pseudomonas guguanensis D30</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Surface Tension</subject><subject>Surface-Active Agents - metabolism</subject><subject>Surfactants</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1082-6068</issn><issn>1532-2297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRS0URB7wCSBL2bCZoey2u9s70EASpEggAWvL7rYjR93twQ9Fw9dTw0yyYJFN-aFzq67qEvKWwZpBDx-w8Bbafs2BszVTnCumXpAzJhu-wkd3gndkVnvolJznfA_AVMf6V-S0ES1XwOUZCT-KKSGXMJiJxm0Jc_iDH3Gh0dPZjaHOdIjzNi5uKZn6mKgNMdfkzVDMUug2xbEO_xR2R79nV8c4x8VkelfvqkFZDpl-buA1eenNlN2b43lBfl19-bm5Wd1-u_66-XS7GholClbZO-EM9J3ovLLgsVjRCseVc42zI-8BpLFGMGB2FDBKp4QFI3xrhWguyPtDX3T2u7pc9Bzy4KYJvcSaNZc9KMk6KRG9_A-9jzUt6E7zlgvRM8ZapOSBGlLMOTmvtynMJu00A73PQj9mofdZ6GMWqHt37F4tbvJJ9bh8BD4egLDgXmfzENM06mJ2U0w-mWUIWTfPz_gLUyCaDA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pardhi, Dimple S.</creator><creator>Panchal, Rakeshkumar R.</creator><creator>Raval, Vikram H.</creator><creator>Rajput, Kiransinh N.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8715-8553</orcidid><orcidid>https://orcid.org/0000-0002-3206-248X</orcidid><orcidid>https://orcid.org/0000-0001-8912-1850</orcidid><orcidid>https://orcid.org/0000-0001-8669-8347</orcidid></search><sort><creationdate>2022</creationdate><title>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</title><author>Pardhi, Dimple S. ; Panchal, Rakeshkumar R. ; Raval, Vikram H. ; Rajput, Kiransinh N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Calcium chloride</topic><topic>Central composite design</topic><topic>Chloroform</topic><topic>Culture Media</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Emulsification</topic><topic>emulsification index</topic><topic>Ethyl acetate</topic><topic>Experimental design</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Indicators and Reagents - chemistry</topic><topic>Infrared spectroscopy</topic><topic>lipopeptide</topic><topic>Methanol</topic><topic>Micelles</topic><topic>mineral oil</topic><topic>Mineral oils</topic><topic>Peptones</topic><topic>Plackett-Burman design</topic><topic>Pseudomonas</topic><topic>Pseudomonas - metabolism</topic><topic>Pseudomonas guguanensis D30</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Surface Tension</topic><topic>Surface-Active Agents - metabolism</topic><topic>Surfactants</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardhi, Dimple S.</creatorcontrib><creatorcontrib>Panchal, Rakeshkumar R.</creatorcontrib><creatorcontrib>Raval, Vikram H.</creatorcontrib><creatorcontrib>Rajput, Kiransinh N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Preparative biochemistry &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardhi, Dimple S.</au><au>Panchal, Rakeshkumar R.</au><au>Raval, Vikram H.</au><au>Rajput, Kiransinh N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</atitle><jtitle>Preparative biochemistry &amp; biotechnology</jtitle><addtitle>Prep Biochem Biotechnol</addtitle><date>2022</date><risdate>2022</risdate><volume>52</volume><issue>2</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>1082-6068</issn><eissn>1532-2297</eissn><abstract>Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO 4 , and CaCl 2 found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR).</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>34629025</pmid><doi>10.1080/10826068.2021.1922919</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8715-8553</orcidid><orcidid>https://orcid.org/0000-0002-3206-248X</orcidid><orcidid>https://orcid.org/0000-0001-8912-1850</orcidid><orcidid>https://orcid.org/0000-0001-8669-8347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1082-6068
ispartof Preparative biochemistry & biotechnology, 2022, Vol.52 (2), p.171-180
issn 1082-6068
1532-2297
language eng
recordid cdi_proquest_journals_2624481116
source Taylor and Francis Science and Technology Collection
subjects Acetic acid
Calcium chloride
Central composite design
Chloroform
Culture Media
Design of experiments
Design optimization
Emulsification
emulsification index
Ethyl acetate
Experimental design
Fourier analysis
Fourier transforms
Indicators and Reagents - chemistry
Infrared spectroscopy
lipopeptide
Methanol
Micelles
mineral oil
Mineral oils
Peptones
Plackett-Burman design
Pseudomonas
Pseudomonas - metabolism
Pseudomonas guguanensis D30
Regression analysis
Statistical analysis
Surface Tension
Surface-Active Agents - metabolism
Surfactants
Yeast
Yeasts
title Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20optimization%20of%20medium%20components%20for%20biosurfactant%20production%20by%20Pseudomonas%20guguanensis%20D30&rft.jtitle=Preparative%20biochemistry%20&%20biotechnology&rft.au=Pardhi,%20Dimple%20S.&rft.date=2022&rft.volume=52&rft.issue=2&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=1082-6068&rft.eissn=1532-2297&rft_id=info:doi/10.1080/10826068.2021.1922919&rft_dat=%3Cproquest_pubme%3E2624481116%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624481116&rft_id=info:pmid/34629025&rfr_iscdi=true