Loading…
Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30
Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO 4 , and CaCl 2 found significant on the basis of emulsifi...
Saved in:
Published in: | Preparative biochemistry & biotechnology 2022, Vol.52 (2), p.171-180 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443 |
container_end_page | 180 |
container_issue | 2 |
container_start_page | 171 |
container_title | Preparative biochemistry & biotechnology |
container_volume | 52 |
creator | Pardhi, Dimple S. Panchal, Rakeshkumar R. Raval, Vikram H. Rajput, Kiransinh N. |
description | Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO
4
, and CaCl
2
found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR). |
doi_str_mv | 10.1080/10826068.2021.1922919 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2624481116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624481116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0URB7wCSBL2bCZoey2u9s70EASpEggAWvL7rYjR93twQ9Fw9dTw0yyYJFN-aFzq67qEvKWwZpBDx-w8Bbafs2BszVTnCumXpAzJhu-wkd3gndkVnvolJznfA_AVMf6V-S0ES1XwOUZCT-KKSGXMJiJxm0Jc_iDH3Gh0dPZjaHOdIjzNi5uKZn6mKgNMdfkzVDMUug2xbEO_xR2R79nV8c4x8VkelfvqkFZDpl-buA1eenNlN2b43lBfl19-bm5Wd1-u_66-XS7GholClbZO-EM9J3ovLLgsVjRCseVc42zI-8BpLFGMGB2FDBKp4QFI3xrhWguyPtDX3T2u7pc9Bzy4KYJvcSaNZc9KMk6KRG9_A-9jzUt6E7zlgvRM8ZapOSBGlLMOTmvtynMJu00A73PQj9mofdZ6GMWqHt37F4tbvJJ9bh8BD4egLDgXmfzENM06mJ2U0w-mWUIWTfPz_gLUyCaDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624481116</pqid></control><display><type>article</type><title>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</title><source>Taylor and Francis Science and Technology Collection</source><creator>Pardhi, Dimple S. ; Panchal, Rakeshkumar R. ; Raval, Vikram H. ; Rajput, Kiransinh N.</creator><creatorcontrib>Pardhi, Dimple S. ; Panchal, Rakeshkumar R. ; Raval, Vikram H. ; Rajput, Kiransinh N.</creatorcontrib><description>Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO
4
, and CaCl
2
found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR).</description><identifier>ISSN: 1082-6068</identifier><identifier>EISSN: 1532-2297</identifier><identifier>DOI: 10.1080/10826068.2021.1922919</identifier><identifier>PMID: 34629025</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Acetic acid ; Calcium chloride ; Central composite design ; Chloroform ; Culture Media ; Design of experiments ; Design optimization ; Emulsification ; emulsification index ; Ethyl acetate ; Experimental design ; Fourier analysis ; Fourier transforms ; Indicators and Reagents - chemistry ; Infrared spectroscopy ; lipopeptide ; Methanol ; Micelles ; mineral oil ; Mineral oils ; Peptones ; Plackett-Burman design ; Pseudomonas ; Pseudomonas - metabolism ; Pseudomonas guguanensis D30 ; Regression analysis ; Statistical analysis ; Surface Tension ; Surface-Active Agents - metabolism ; Surfactants ; Yeast ; Yeasts</subject><ispartof>Preparative biochemistry & biotechnology, 2022, Vol.52 (2), p.171-180</ispartof><rights>2021 Taylor & Francis Group, LLC 2021</rights><rights>2021 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</citedby><cites>FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</cites><orcidid>0000-0001-8715-8553 ; 0000-0002-3206-248X ; 0000-0001-8912-1850 ; 0000-0001-8669-8347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34629025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pardhi, Dimple S.</creatorcontrib><creatorcontrib>Panchal, Rakeshkumar R.</creatorcontrib><creatorcontrib>Raval, Vikram H.</creatorcontrib><creatorcontrib>Rajput, Kiransinh N.</creatorcontrib><title>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</title><title>Preparative biochemistry & biotechnology</title><addtitle>Prep Biochem Biotechnol</addtitle><description>Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO
4
, and CaCl
2
found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR).</description><subject>Acetic acid</subject><subject>Calcium chloride</subject><subject>Central composite design</subject><subject>Chloroform</subject><subject>Culture Media</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Emulsification</subject><subject>emulsification index</subject><subject>Ethyl acetate</subject><subject>Experimental design</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Indicators and Reagents - chemistry</subject><subject>Infrared spectroscopy</subject><subject>lipopeptide</subject><subject>Methanol</subject><subject>Micelles</subject><subject>mineral oil</subject><subject>Mineral oils</subject><subject>Peptones</subject><subject>Plackett-Burman design</subject><subject>Pseudomonas</subject><subject>Pseudomonas - metabolism</subject><subject>Pseudomonas guguanensis D30</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Surface Tension</subject><subject>Surface-Active Agents - metabolism</subject><subject>Surfactants</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1082-6068</issn><issn>1532-2297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRS0URB7wCSBL2bCZoey2u9s70EASpEggAWvL7rYjR93twQ9Fw9dTw0yyYJFN-aFzq67qEvKWwZpBDx-w8Bbafs2BszVTnCumXpAzJhu-wkd3gndkVnvolJznfA_AVMf6V-S0ES1XwOUZCT-KKSGXMJiJxm0Jc_iDH3Gh0dPZjaHOdIjzNi5uKZn6mKgNMdfkzVDMUug2xbEO_xR2R79nV8c4x8VkelfvqkFZDpl-buA1eenNlN2b43lBfl19-bm5Wd1-u_66-XS7GholClbZO-EM9J3ovLLgsVjRCseVc42zI-8BpLFGMGB2FDBKp4QFI3xrhWguyPtDX3T2u7pc9Bzy4KYJvcSaNZc9KMk6KRG9_A-9jzUt6E7zlgvRM8ZapOSBGlLMOTmvtynMJu00A73PQj9mofdZ6GMWqHt37F4tbvJJ9bh8BD4egLDgXmfzENM06mJ2U0w-mWUIWTfPz_gLUyCaDA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pardhi, Dimple S.</creator><creator>Panchal, Rakeshkumar R.</creator><creator>Raval, Vikram H.</creator><creator>Rajput, Kiransinh N.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8715-8553</orcidid><orcidid>https://orcid.org/0000-0002-3206-248X</orcidid><orcidid>https://orcid.org/0000-0001-8912-1850</orcidid><orcidid>https://orcid.org/0000-0001-8669-8347</orcidid></search><sort><creationdate>2022</creationdate><title>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</title><author>Pardhi, Dimple S. ; Panchal, Rakeshkumar R. ; Raval, Vikram H. ; Rajput, Kiransinh N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Calcium chloride</topic><topic>Central composite design</topic><topic>Chloroform</topic><topic>Culture Media</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Emulsification</topic><topic>emulsification index</topic><topic>Ethyl acetate</topic><topic>Experimental design</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Indicators and Reagents - chemistry</topic><topic>Infrared spectroscopy</topic><topic>lipopeptide</topic><topic>Methanol</topic><topic>Micelles</topic><topic>mineral oil</topic><topic>Mineral oils</topic><topic>Peptones</topic><topic>Plackett-Burman design</topic><topic>Pseudomonas</topic><topic>Pseudomonas - metabolism</topic><topic>Pseudomonas guguanensis D30</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Surface Tension</topic><topic>Surface-Active Agents - metabolism</topic><topic>Surfactants</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardhi, Dimple S.</creatorcontrib><creatorcontrib>Panchal, Rakeshkumar R.</creatorcontrib><creatorcontrib>Raval, Vikram H.</creatorcontrib><creatorcontrib>Rajput, Kiransinh N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Preparative biochemistry & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardhi, Dimple S.</au><au>Panchal, Rakeshkumar R.</au><au>Raval, Vikram H.</au><au>Rajput, Kiransinh N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30</atitle><jtitle>Preparative biochemistry & biotechnology</jtitle><addtitle>Prep Biochem Biotechnol</addtitle><date>2022</date><risdate>2022</risdate><volume>52</volume><issue>2</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>1082-6068</issn><eissn>1532-2297</eissn><abstract>Biosurfactant production by Pseudomonas guguanensis D30 was reported using mineral oil in submerged condition. Twelve medium components were tested at two levels by Plackett-Burman design, among them, mineral oil, yeast extract, peptone, MgSO
4
, and CaCl
2
found significant on the basis of emulsification index. These five significant components were further optimized through central composite design (CCD). The experimental design was successfully used for regression analysis and the significant model suggested the solution of 10% (v/v) mineral oil, 3.0 g/L (w/v) yeast extract and 0.2 g/L (w/v) peptone for 13.14 g/L predicted biosurfactant production. We kept the suggested concentrations of medium components and got 13.34 ± 0.08 g/L biosurfactant production, which is almost double the conventional one-factor-at-a-time production (7.126 ± 0.12 g/L). It reduced the surface tension of the medium up to 28 ± 1.2 mN/m. We found ethyl acetate a suitable solvent for biosurfactant extraction amongst methanol, chloroform, and methanol:chloroform. The partially purified biosurfactant was chemically characterized as lipopeptide by Fourier transform infrared spectroscopy (FT-IR).</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>34629025</pmid><doi>10.1080/10826068.2021.1922919</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8715-8553</orcidid><orcidid>https://orcid.org/0000-0002-3206-248X</orcidid><orcidid>https://orcid.org/0000-0001-8912-1850</orcidid><orcidid>https://orcid.org/0000-0001-8669-8347</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1082-6068 |
ispartof | Preparative biochemistry & biotechnology, 2022, Vol.52 (2), p.171-180 |
issn | 1082-6068 1532-2297 |
language | eng |
recordid | cdi_proquest_journals_2624481116 |
source | Taylor and Francis Science and Technology Collection |
subjects | Acetic acid Calcium chloride Central composite design Chloroform Culture Media Design of experiments Design optimization Emulsification emulsification index Ethyl acetate Experimental design Fourier analysis Fourier transforms Indicators and Reagents - chemistry Infrared spectroscopy lipopeptide Methanol Micelles mineral oil Mineral oils Peptones Plackett-Burman design Pseudomonas Pseudomonas - metabolism Pseudomonas guguanensis D30 Regression analysis Statistical analysis Surface Tension Surface-Active Agents - metabolism Surfactants Yeast Yeasts |
title | Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20optimization%20of%20medium%20components%20for%20biosurfactant%20production%20by%20Pseudomonas%20guguanensis%20D30&rft.jtitle=Preparative%20biochemistry%20&%20biotechnology&rft.au=Pardhi,%20Dimple%20S.&rft.date=2022&rft.volume=52&rft.issue=2&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=1082-6068&rft.eissn=1532-2297&rft_id=info:doi/10.1080/10826068.2021.1922919&rft_dat=%3Cproquest_pubme%3E2624481116%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-c358e4ea08747f9b0ff9bb464e29ee3ebd28005aba4101bd40d5e94b0a4f6b443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624481116&rft_id=info:pmid/34629025&rfr_iscdi=true |