Loading…
Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions
Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It...
Saved in:
Published in: | Journal of the American Ceramic Society 2022-04, Vol.105 (4), p.2813-2822 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2822 |
container_issue | 4 |
container_start_page | 2813 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | V Sotnikov, Aleksandr M Syrokvashin, Mikhail V Bakovets, Vladimir Yu Filatova, Irina V Korotaev, Evgeniy Sh Agazhanov, Alibek A Samoshkin, Dmitrii |
description | Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y. |
doi_str_mv | 10.1111/jace.18292 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2624610908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624610908</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1402-f7a29a279b2d4c1b34493ef31c31792f28f8aa0ce1f68a144b6b30822f9eeebd3</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWw4QSW2IBEgsdJE3vBoiptAVViASxYWU4yoakSp-QhyI4jcITegRv0AByCk-C2zGJe-vXP6CPkFJgLNq4WOkYXBJd8j_RgMACHSwj2SY8xxp1QcHZIjup6YUeQwu-Rj0n22lZIy5QWWGUNRTPXJsYCTUMzQ5s5VkWJOcZNlcW00I1V6bymka4xoaWhP9-_n18zw1zxEjGXP4I7sIuOns_MenW9Xk2TS3rTXdC6zLNkk9smK019TA5S64Mn_7VPnifjp9GtM3uY3o2GM2cJvn05DTWXmocy4okfQ-T5vvQw9SD2IJQ85SIVWrMYIQ2EBt-PgshjgvNUImKUeH1ytvNdVuVbi3WjFmVbGXtS8YD7ATDJhFXBTvWe5dipZZUVuuoUMLXBqjZY1Raruh-OxtvO-wPo5W_i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624610908</pqid></control><display><type>article</type><title>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>V Sotnikov, Aleksandr ; M Syrokvashin, Mikhail ; V Bakovets, Vladimir ; Yu Filatova, Irina ; V Korotaev, Evgeniy ; Sh Agazhanov, Alibek ; A Samoshkin, Dmitrii</creator><creatorcontrib>V Sotnikov, Aleksandr ; M Syrokvashin, Mikhail ; V Bakovets, Vladimir ; Yu Filatova, Irina ; V Korotaev, Evgeniy ; Sh Agazhanov, Alibek ; A Samoshkin, Dmitrii</creatorcontrib><description>Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18292</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Coherent scattering ; Crystallites ; Dysprosium ; Electrical resistivity ; Figure of merit ; Gadolinium ; Heat conductivity ; Heat transfer ; Nucleation ; rare earth ; Seebeck effect ; Solid solutions ; sulfides ; Thermal conductivity ; thermal properties ; Thermoelectric materials ; thermoelectric properties</subject><ispartof>Journal of the American Ceramic Society, 2022-04, Vol.105 (4), p.2813-2822</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3601-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>V Sotnikov, Aleksandr</creatorcontrib><creatorcontrib>M Syrokvashin, Mikhail</creatorcontrib><creatorcontrib>V Bakovets, Vladimir</creatorcontrib><creatorcontrib>Yu Filatova, Irina</creatorcontrib><creatorcontrib>V Korotaev, Evgeniy</creatorcontrib><creatorcontrib>Sh Agazhanov, Alibek</creatorcontrib><creatorcontrib>A Samoshkin, Dmitrii</creatorcontrib><title>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</title><title>Journal of the American Ceramic Society</title><description>Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y.</description><subject>Coherent scattering</subject><subject>Crystallites</subject><subject>Dysprosium</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Gadolinium</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Nucleation</subject><subject>rare earth</subject><subject>Seebeck effect</subject><subject>Solid solutions</subject><subject>sulfides</subject><subject>Thermal conductivity</subject><subject>thermal properties</subject><subject>Thermoelectric materials</subject><subject>thermoelectric properties</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWw4QSW2IBEgsdJE3vBoiptAVViASxYWU4yoakSp-QhyI4jcITegRv0AByCk-C2zGJe-vXP6CPkFJgLNq4WOkYXBJd8j_RgMACHSwj2SY8xxp1QcHZIjup6YUeQwu-Rj0n22lZIy5QWWGUNRTPXJsYCTUMzQ5s5VkWJOcZNlcW00I1V6bymka4xoaWhP9-_n18zw1zxEjGXP4I7sIuOns_MenW9Xk2TS3rTXdC6zLNkk9smK019TA5S64Mn_7VPnifjp9GtM3uY3o2GM2cJvn05DTWXmocy4okfQ-T5vvQw9SD2IJQ85SIVWrMYIQ2EBt-PgshjgvNUImKUeH1ytvNdVuVbi3WjFmVbGXtS8YD7ATDJhFXBTvWe5dipZZUVuuoUMLXBqjZY1Raruh-OxtvO-wPo5W_i</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>V Sotnikov, Aleksandr</creator><creator>M Syrokvashin, Mikhail</creator><creator>V Bakovets, Vladimir</creator><creator>Yu Filatova, Irina</creator><creator>V Korotaev, Evgeniy</creator><creator>Sh Agazhanov, Alibek</creator><creator>A Samoshkin, Dmitrii</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3601-9689</orcidid></search><sort><creationdate>202204</creationdate><title>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</title><author>V Sotnikov, Aleksandr ; M Syrokvashin, Mikhail ; V Bakovets, Vladimir ; Yu Filatova, Irina ; V Korotaev, Evgeniy ; Sh Agazhanov, Alibek ; A Samoshkin, Dmitrii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1402-f7a29a279b2d4c1b34493ef31c31792f28f8aa0ce1f68a144b6b30822f9eeebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coherent scattering</topic><topic>Crystallites</topic><topic>Dysprosium</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Gadolinium</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Nucleation</topic><topic>rare earth</topic><topic>Seebeck effect</topic><topic>Solid solutions</topic><topic>sulfides</topic><topic>Thermal conductivity</topic><topic>thermal properties</topic><topic>Thermoelectric materials</topic><topic>thermoelectric properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>V Sotnikov, Aleksandr</creatorcontrib><creatorcontrib>M Syrokvashin, Mikhail</creatorcontrib><creatorcontrib>V Bakovets, Vladimir</creatorcontrib><creatorcontrib>Yu Filatova, Irina</creatorcontrib><creatorcontrib>V Korotaev, Evgeniy</creatorcontrib><creatorcontrib>Sh Agazhanov, Alibek</creatorcontrib><creatorcontrib>A Samoshkin, Dmitrii</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>V Sotnikov, Aleksandr</au><au>M Syrokvashin, Mikhail</au><au>V Bakovets, Vladimir</au><au>Yu Filatova, Irina</au><au>V Korotaev, Evgeniy</au><au>Sh Agazhanov, Alibek</au><au>A Samoshkin, Dmitrii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-04</date><risdate>2022</risdate><volume>105</volume><issue>4</issue><spage>2813</spage><epage>2822</epage><pages>2813-2822</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18292</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3601-9689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-04, Vol.105 (4), p.2813-2822 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2624610908 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Coherent scattering Crystallites Dysprosium Electrical resistivity Figure of merit Gadolinium Heat conductivity Heat transfer Nucleation rare earth Seebeck effect Solid solutions sulfides Thermal conductivity thermal properties Thermoelectric materials thermoelectric properties |
title | Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Figure%20of%20merit%20enhancement%20in%20thermoelectric%20materials%20based%20on%20%CE%B3%E2%80%90Ln0.8Yb0.2S1.5%E2%80%90y%20(Ln%C2%A0=%C2%A0Gd,%20Dy)%20solid%20solutions&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=V%20Sotnikov,%20Aleksandr&rft.date=2022-04&rft.volume=105&rft.issue=4&rft.spage=2813&rft.epage=2822&rft.pages=2813-2822&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18292&rft_dat=%3Cproquest_wiley%3E2624610908%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1402-f7a29a279b2d4c1b34493ef31c31792f28f8aa0ce1f68a144b6b30822f9eeebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624610908&rft_id=info:pmid/&rfr_iscdi=true |