Loading…

Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions

Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2022-04, Vol.105 (4), p.2813-2822
Main Authors: V Sotnikov, Aleksandr, M Syrokvashin, Mikhail, V Bakovets, Vladimir, Yu Filatova, Irina, V Korotaev, Evgeniy, Sh Agazhanov, Alibek, A Samoshkin, Dmitrii
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2822
container_issue 4
container_start_page 2813
container_title Journal of the American Ceramic Society
container_volume 105
creator V Sotnikov, Aleksandr
M Syrokvashin, Mikhail
V Bakovets, Vladimir
Yu Filatova, Irina
V Korotaev, Evgeniy
Sh Agazhanov, Alibek
A Samoshkin, Dmitrii
description Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y.
doi_str_mv 10.1111/jace.18292
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2624610908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624610908</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1402-f7a29a279b2d4c1b34493ef31c31792f28f8aa0ce1f68a144b6b30822f9eeebd3</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWw4QSW2IBEgsdJE3vBoiptAVViASxYWU4yoakSp-QhyI4jcITegRv0AByCk-C2zGJe-vXP6CPkFJgLNq4WOkYXBJd8j_RgMACHSwj2SY8xxp1QcHZIjup6YUeQwu-Rj0n22lZIy5QWWGUNRTPXJsYCTUMzQ5s5VkWJOcZNlcW00I1V6bymka4xoaWhP9-_n18zw1zxEjGXP4I7sIuOns_MenW9Xk2TS3rTXdC6zLNkk9smK019TA5S64Mn_7VPnifjp9GtM3uY3o2GM2cJvn05DTWXmocy4okfQ-T5vvQw9SD2IJQ85SIVWrMYIQ2EBt-PgshjgvNUImKUeH1ytvNdVuVbi3WjFmVbGXtS8YD7ATDJhFXBTvWe5dipZZUVuuoUMLXBqjZY1Raruh-OxtvO-wPo5W_i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624610908</pqid></control><display><type>article</type><title>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>V Sotnikov, Aleksandr ; M Syrokvashin, Mikhail ; V Bakovets, Vladimir ; Yu Filatova, Irina ; V Korotaev, Evgeniy ; Sh Agazhanov, Alibek ; A Samoshkin, Dmitrii</creator><creatorcontrib>V Sotnikov, Aleksandr ; M Syrokvashin, Mikhail ; V Bakovets, Vladimir ; Yu Filatova, Irina ; V Korotaev, Evgeniy ; Sh Agazhanov, Alibek ; A Samoshkin, Dmitrii</creatorcontrib><description>Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18292</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Coherent scattering ; Crystallites ; Dysprosium ; Electrical resistivity ; Figure of merit ; Gadolinium ; Heat conductivity ; Heat transfer ; Nucleation ; rare earth ; Seebeck effect ; Solid solutions ; sulfides ; Thermal conductivity ; thermal properties ; Thermoelectric materials ; thermoelectric properties</subject><ispartof>Journal of the American Ceramic Society, 2022-04, Vol.105 (4), p.2813-2822</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3601-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>V Sotnikov, Aleksandr</creatorcontrib><creatorcontrib>M Syrokvashin, Mikhail</creatorcontrib><creatorcontrib>V Bakovets, Vladimir</creatorcontrib><creatorcontrib>Yu Filatova, Irina</creatorcontrib><creatorcontrib>V Korotaev, Evgeniy</creatorcontrib><creatorcontrib>Sh Agazhanov, Alibek</creatorcontrib><creatorcontrib>A Samoshkin, Dmitrii</creatorcontrib><title>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</title><title>Journal of the American Ceramic Society</title><description>Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y.</description><subject>Coherent scattering</subject><subject>Crystallites</subject><subject>Dysprosium</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Gadolinium</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Nucleation</subject><subject>rare earth</subject><subject>Seebeck effect</subject><subject>Solid solutions</subject><subject>sulfides</subject><subject>Thermal conductivity</subject><subject>thermal properties</subject><subject>Thermoelectric materials</subject><subject>thermoelectric properties</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWw4QSW2IBEgsdJE3vBoiptAVViASxYWU4yoakSp-QhyI4jcITegRv0AByCk-C2zGJe-vXP6CPkFJgLNq4WOkYXBJd8j_RgMACHSwj2SY8xxp1QcHZIjup6YUeQwu-Rj0n22lZIy5QWWGUNRTPXJsYCTUMzQ5s5VkWJOcZNlcW00I1V6bymka4xoaWhP9-_n18zw1zxEjGXP4I7sIuOns_MenW9Xk2TS3rTXdC6zLNkk9smK019TA5S64Mn_7VPnifjp9GtM3uY3o2GM2cJvn05DTWXmocy4okfQ-T5vvQw9SD2IJQ85SIVWrMYIQ2EBt-PgshjgvNUImKUeH1ytvNdVuVbi3WjFmVbGXtS8YD7ATDJhFXBTvWe5dipZZUVuuoUMLXBqjZY1Raruh-OxtvO-wPo5W_i</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>V Sotnikov, Aleksandr</creator><creator>M Syrokvashin, Mikhail</creator><creator>V Bakovets, Vladimir</creator><creator>Yu Filatova, Irina</creator><creator>V Korotaev, Evgeniy</creator><creator>Sh Agazhanov, Alibek</creator><creator>A Samoshkin, Dmitrii</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3601-9689</orcidid></search><sort><creationdate>202204</creationdate><title>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</title><author>V Sotnikov, Aleksandr ; M Syrokvashin, Mikhail ; V Bakovets, Vladimir ; Yu Filatova, Irina ; V Korotaev, Evgeniy ; Sh Agazhanov, Alibek ; A Samoshkin, Dmitrii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1402-f7a29a279b2d4c1b34493ef31c31792f28f8aa0ce1f68a144b6b30822f9eeebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coherent scattering</topic><topic>Crystallites</topic><topic>Dysprosium</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Gadolinium</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Nucleation</topic><topic>rare earth</topic><topic>Seebeck effect</topic><topic>Solid solutions</topic><topic>sulfides</topic><topic>Thermal conductivity</topic><topic>thermal properties</topic><topic>Thermoelectric materials</topic><topic>thermoelectric properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>V Sotnikov, Aleksandr</creatorcontrib><creatorcontrib>M Syrokvashin, Mikhail</creatorcontrib><creatorcontrib>V Bakovets, Vladimir</creatorcontrib><creatorcontrib>Yu Filatova, Irina</creatorcontrib><creatorcontrib>V Korotaev, Evgeniy</creatorcontrib><creatorcontrib>Sh Agazhanov, Alibek</creatorcontrib><creatorcontrib>A Samoshkin, Dmitrii</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>V Sotnikov, Aleksandr</au><au>M Syrokvashin, Mikhail</au><au>V Bakovets, Vladimir</au><au>Yu Filatova, Irina</au><au>V Korotaev, Evgeniy</au><au>Sh Agazhanov, Alibek</au><au>A Samoshkin, Dmitrii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-04</date><risdate>2022</risdate><volume>105</volume><issue>4</issue><spage>2813</spage><epage>2822</epage><pages>2813-2822</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Here we report the study temperature dependencies of the Seebeck coefficient, the electrical resistivity (T = 300–750 K), the total thermal conductivity (T = 300–973 K), and the thermoelectric figure of merit (T = 300–750 K) of ceramic samples of γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions. It was found that Yb3+ ions in γ‐Ln0.8Yb0.2S1.5‐y act as the promoters of higher crystallite nucleation rate during the formation of solid solutions. This results in the sample dispersion increase and the formation of the additional phonon scattering centers (dislocations and strain stresses along the crystallites semi‐coherent boundaries). These features of the real structure determined the low value of thermal conductivity of γ‐Ln0.8Yb0.2S1.5‐y solid solutions. The lowest electrical resistivity 20 μΩ m at 750 K and the thermal conductivity 0.58 W/m K at 973 K, the highest Seebeck coefficient 125 μV/K at 700 K and the maximum thermoelectric efficiency, ZT = 0.60 (at 770 K) were obtained for γ‐Dy0.8Yb0.2S1.5‐y.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18292</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3601-9689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-04, Vol.105 (4), p.2813-2822
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2624610908
source Wiley-Blackwell Read & Publish Collection
subjects Coherent scattering
Crystallites
Dysprosium
Electrical resistivity
Figure of merit
Gadolinium
Heat conductivity
Heat transfer
Nucleation
rare earth
Seebeck effect
Solid solutions
sulfides
Thermal conductivity
thermal properties
Thermoelectric materials
thermoelectric properties
title Figure of merit enhancement in thermoelectric materials based on γ‐Ln0.8Yb0.2S1.5‐y (Ln = Gd, Dy) solid solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Figure%20of%20merit%20enhancement%20in%20thermoelectric%20materials%20based%20on%20%CE%B3%E2%80%90Ln0.8Yb0.2S1.5%E2%80%90y%20(Ln%C2%A0=%C2%A0Gd,%20Dy)%20solid%20solutions&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=V%20Sotnikov,%20Aleksandr&rft.date=2022-04&rft.volume=105&rft.issue=4&rft.spage=2813&rft.epage=2822&rft.pages=2813-2822&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18292&rft_dat=%3Cproquest_wiley%3E2624610908%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1402-f7a29a279b2d4c1b34493ef31c31792f28f8aa0ce1f68a144b6b30822f9eeebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624610908&rft_id=info:pmid/&rfr_iscdi=true