Loading…

Holocene morpho-sedimentary evolution of Marambaia Barrier Island (SE Brazil)

Barrier islands are sedimentary bodies susceptible to changes in sediment supply, dominant physical processes, and sea level. The aim of this work was to study the sedimentary processes that established Marambaia Barrier Island (SE Brazil) as an elongated sandy body that created Sepetiba Bay. For th...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary research 2022-01, Vol.105, p.182-200
Main Authors: Dadalto, Tatiana Pinheiro, Carvalho, Breylla Campos, Guerra, Josefa Varela, Reis, Antonio Tadeu dos, Silva, Cleverson Guizan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Barrier islands are sedimentary bodies susceptible to changes in sediment supply, dominant physical processes, and sea level. The aim of this work was to study the sedimentary processes that established Marambaia Barrier Island (SE Brazil) as an elongated sandy body that created Sepetiba Bay. For this purpose, barrier and back-barrier bay environments were analyzed using high-resolution satellite imagery, geophysical and topographic surveys, surface sediment samples and short cores, and radiocarbon and optically stimulated luminescence (OSL) dating techniques. Seven morpho-sedimentary domains were identified: coastal beach ridges, overland flow features, inter-ridge paleo lagoon, bayside beach ridges, marshlands, dune field and tidal wetlands. The results show that Marambaia Barrier Island evolved throughout the Holocene, first under normal regression conditions during sea-level rise, and then by forced regression as sea level lowered to its present position. Concurrent processes related to longshore drift, onshore transport, reworked barrier deposits, eolian transport, bay circulation, and pedogenesis influenced its morpho-sedimentary evolution. Morphological features such as truncated beach ridges, flying spits, and filled channels attest to the occurrence of alternating periods of erosion and accretion, evincing how the morphology of barrier island systems preserves an important archive of environmental changes.
ISSN:0033-5894
1096-0287
DOI:10.1017/qua.2021.43