Loading…

Identifying Influential Nodes Using Overlapping Modularity Vitality

It is of paramount importance to uncover influential nodes to control diffusion phenomena in a network. In recent works, there is a growing trend to investigate the role of the community structure to solve this issue. Up to now, the vast majority of the so-called community-aware centrality measures...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-01
Main Authors: Rajeh, Stephany, Savonnet, Marinette, Leclercq, Eric, Cherifi, Hocine
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is of paramount importance to uncover influential nodes to control diffusion phenomena in a network. In recent works, there is a growing trend to investigate the role of the community structure to solve this issue. Up to now, the vast majority of the so-called community-aware centrality measures rely on non-overlapping community structure. However, in many real-world networks, such as social networks, the communities overlap. In other words, a node can belong to multiple communities. To overcome this drawback, we propose and investigate the "Overlapping Modularity Vitality" centrality measure. This extension of "Modularity Vitality" quantifies the community structure strength variation when removing a node. It allows identifying a node as a hub or a bridge based on its contribution to the overlapping modularity of a network. A comparative analysis with its non-overlapping version using the Susceptible-Infected-Recovered (SIR) epidemic diffusion model has been performed on a set of six real-world networks. Overall, Overlapping Modularity Vitality outperforms its alternative. These results illustrate the importance of incorporating knowledge about the overlapping community structure to identify influential nodes effectively. Moreover, one can use multiple ranking strategies as the two measures are signed. Results show that selecting the nodes with the top positive or the top absolute centrality values is more effective than choosing the ones with the maximum negative values to spread the epidemic.
ISSN:2331-8422
DOI:10.48550/arxiv.2202.00516