Loading…

3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time

•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settl...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2022-02, Vol.183, p.122158, Article 122158
Main Authors: Haffar, Iheb, Flin, Frédéric, Geindreau, Christian, Petillon, Nicolas, Gervais, Pierre-Colin, Edery, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123
cites cdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123
container_end_page
container_issue
container_start_page 122158
container_title International journal of heat and mass transfer
container_volume 183
creator Haffar, Iheb
Flin, Frédéric
Geindreau, Christian
Petillon, Nicolas
Gervais, Pierre-Colin
Edery, Vincent
description •A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C. [Display omitted] Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved.
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.122158
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2624987784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021012643</els_id><sourcerecordid>2624987784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</originalsourceid><addsrcrecordid>eNqNkT2P1DAQhi0EEsvBf7BEA0X2ZhwncTpWx8cdWokGasvrjHWOkjjYzkr8exICNDRUHnsePZrxy9gbhCMC1rf90fePZPJoUsrRTMlRPAoQeEQhsFJP2AFV0xYCVfuUHQCwKdoS4Tl7kVK_XUHWB2bK93z0NoZVsti8ROJ0DcOSfZh4cNxb4n7iPWV-KpC7hQZuEjdrNdk_kJnnwVPHM40zRfPLEq4UefYjvWTPnBkSvfp93rBvHz98vbsvzl8-PdydzoWVtchFBaWUNThFUF1asg0JoTp3aaUS5cWhLEEq2dWoXIvY1BVWEhR0AkrRGBTlDXu7ex_NoOfoRxN_6GC8vj-d9fYGskVolLjiyr7e2TmG7wulrPuwxGkdT4tayFY1jZIr9W6ntu9JkdxfLYLeQtC9_jcEvYWg9xBWxeddQevmV792k_U0Wep8JJt1F_z_y34CuNyZ6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624987784</pqid></control><display><type>article</type><title>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</title><source>ScienceDirect Freedom Collection</source><creator>Haffar, Iheb ; Flin, Frédéric ; Geindreau, Christian ; Petillon, Nicolas ; Gervais, Pierre-Colin ; Edery, Vincent</creator><creatorcontrib>Haffar, Iheb ; Flin, Frédéric ; Geindreau, Christian ; Petillon, Nicolas ; Gervais, Pierre-Colin ; Edery, Vincent</creatorcontrib><description>•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C. [Display omitted] Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.122158</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D evolution ; Aircraft fuel systems ; Aviation fuel ; Engineering Sciences ; Evolution ; Ice ; Ice crystals ; Image processing ; Jet engine fuels ; Jet fuel ; Microstructure ; Morphology ; Nucleation ; Temperature ; Temperature effects ; Time-lapse ; Tomography</subject><ispartof>International journal of heat and mass transfer, 2022-02, Vol.183, p.122158, Article 122158</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</citedby><cites>FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04910782$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haffar, Iheb</creatorcontrib><creatorcontrib>Flin, Frédéric</creatorcontrib><creatorcontrib>Geindreau, Christian</creatorcontrib><creatorcontrib>Petillon, Nicolas</creatorcontrib><creatorcontrib>Gervais, Pierre-Colin</creatorcontrib><creatorcontrib>Edery, Vincent</creatorcontrib><title>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</title><title>International journal of heat and mass transfer</title><description>•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C. [Display omitted] Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved.</description><subject>3D evolution</subject><subject>Aircraft fuel systems</subject><subject>Aviation fuel</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>Ice</subject><subject>Ice crystals</subject><subject>Image processing</subject><subject>Jet engine fuels</subject><subject>Jet fuel</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Time-lapse</subject><subject>Tomography</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkT2P1DAQhi0EEsvBf7BEA0X2ZhwncTpWx8cdWokGasvrjHWOkjjYzkr8exICNDRUHnsePZrxy9gbhCMC1rf90fePZPJoUsrRTMlRPAoQeEQhsFJP2AFV0xYCVfuUHQCwKdoS4Tl7kVK_XUHWB2bK93z0NoZVsti8ROJ0DcOSfZh4cNxb4n7iPWV-KpC7hQZuEjdrNdk_kJnnwVPHM40zRfPLEq4UefYjvWTPnBkSvfp93rBvHz98vbsvzl8-PdydzoWVtchFBaWUNThFUF1asg0JoTp3aaUS5cWhLEEq2dWoXIvY1BVWEhR0AkrRGBTlDXu7ex_NoOfoRxN_6GC8vj-d9fYGskVolLjiyr7e2TmG7wulrPuwxGkdT4tayFY1jZIr9W6ntu9JkdxfLYLeQtC9_jcEvYWg9xBWxeddQevmV792k_U0Wep8JJt1F_z_y34CuNyZ6g</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Haffar, Iheb</creator><creator>Flin, Frédéric</creator><creator>Geindreau, Christian</creator><creator>Petillon, Nicolas</creator><creator>Gervais, Pierre-Colin</creator><creator>Edery, Vincent</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>202202</creationdate><title>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</title><author>Haffar, Iheb ; Flin, Frédéric ; Geindreau, Christian ; Petillon, Nicolas ; Gervais, Pierre-Colin ; Edery, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D evolution</topic><topic>Aircraft fuel systems</topic><topic>Aviation fuel</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>Ice</topic><topic>Ice crystals</topic><topic>Image processing</topic><topic>Jet engine fuels</topic><topic>Jet fuel</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Time-lapse</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haffar, Iheb</creatorcontrib><creatorcontrib>Flin, Frédéric</creatorcontrib><creatorcontrib>Geindreau, Christian</creatorcontrib><creatorcontrib>Petillon, Nicolas</creatorcontrib><creatorcontrib>Gervais, Pierre-Colin</creatorcontrib><creatorcontrib>Edery, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haffar, Iheb</au><au>Flin, Frédéric</au><au>Geindreau, Christian</au><au>Petillon, Nicolas</au><au>Gervais, Pierre-Colin</au><au>Edery, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-02</date><risdate>2022</risdate><volume>183</volume><spage>122158</spage><pages>122158-</pages><artnum>122158</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C. [Display omitted] Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.122158</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2022-02, Vol.183, p.122158, Article 122158
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2624987784
source ScienceDirect Freedom Collection
subjects 3D evolution
Aircraft fuel systems
Aviation fuel
Engineering Sciences
Evolution
Ice
Ice crystals
Image processing
Jet engine fuels
Jet fuel
Microstructure
Morphology
Nucleation
Temperature
Temperature effects
Time-lapse
Tomography
title 3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20microstructure%20evolution%20of%20ice%20in%20jet%20A-1%20fuel%20as%20a%20function%20of%20applied%20temperature%20over%20time&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Haffar,%20Iheb&rft.date=2022-02&rft.volume=183&rft.spage=122158&rft.pages=122158-&rft.artnum=122158&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.122158&rft_dat=%3Cproquest_hal_p%3E2624987784%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624987784&rft_id=info:pmid/&rfr_iscdi=true