Loading…
3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time
•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settl...
Saved in:
Published in: | International journal of heat and mass transfer 2022-02, Vol.183, p.122158, Article 122158 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123 |
container_end_page | |
container_issue | |
container_start_page | 122158 |
container_title | International journal of heat and mass transfer |
container_volume | 183 |
creator | Haffar, Iheb Flin, Frédéric Geindreau, Christian Petillon, Nicolas Gervais, Pierre-Colin Edery, Vincent |
description | •A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C.
[Display omitted]
Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2021.122158 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2624987784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021012643</els_id><sourcerecordid>2624987784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</originalsourceid><addsrcrecordid>eNqNkT2P1DAQhi0EEsvBf7BEA0X2ZhwncTpWx8cdWokGasvrjHWOkjjYzkr8exICNDRUHnsePZrxy9gbhCMC1rf90fePZPJoUsrRTMlRPAoQeEQhsFJP2AFV0xYCVfuUHQCwKdoS4Tl7kVK_XUHWB2bK93z0NoZVsti8ROJ0DcOSfZh4cNxb4n7iPWV-KpC7hQZuEjdrNdk_kJnnwVPHM40zRfPLEq4UefYjvWTPnBkSvfp93rBvHz98vbsvzl8-PdydzoWVtchFBaWUNThFUF1asg0JoTp3aaUS5cWhLEEq2dWoXIvY1BVWEhR0AkrRGBTlDXu7ex_NoOfoRxN_6GC8vj-d9fYGskVolLjiyr7e2TmG7wulrPuwxGkdT4tayFY1jZIr9W6ntu9JkdxfLYLeQtC9_jcEvYWg9xBWxeddQevmV792k_U0Wep8JJt1F_z_y34CuNyZ6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624987784</pqid></control><display><type>article</type><title>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</title><source>ScienceDirect Freedom Collection</source><creator>Haffar, Iheb ; Flin, Frédéric ; Geindreau, Christian ; Petillon, Nicolas ; Gervais, Pierre-Colin ; Edery, Vincent</creator><creatorcontrib>Haffar, Iheb ; Flin, Frédéric ; Geindreau, Christian ; Petillon, Nicolas ; Gervais, Pierre-Colin ; Edery, Vincent</creatorcontrib><description>•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C.
[Display omitted]
Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.122158</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D evolution ; Aircraft fuel systems ; Aviation fuel ; Engineering Sciences ; Evolution ; Ice ; Ice crystals ; Image processing ; Jet engine fuels ; Jet fuel ; Microstructure ; Morphology ; Nucleation ; Temperature ; Temperature effects ; Time-lapse ; Tomography</subject><ispartof>International journal of heat and mass transfer, 2022-02, Vol.183, p.122158, Article 122158</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</citedby><cites>FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04910782$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haffar, Iheb</creatorcontrib><creatorcontrib>Flin, Frédéric</creatorcontrib><creatorcontrib>Geindreau, Christian</creatorcontrib><creatorcontrib>Petillon, Nicolas</creatorcontrib><creatorcontrib>Gervais, Pierre-Colin</creatorcontrib><creatorcontrib>Edery, Vincent</creatorcontrib><title>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</title><title>International journal of heat and mass transfer</title><description>•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C.
[Display omitted]
Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved.</description><subject>3D evolution</subject><subject>Aircraft fuel systems</subject><subject>Aviation fuel</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>Ice</subject><subject>Ice crystals</subject><subject>Image processing</subject><subject>Jet engine fuels</subject><subject>Jet fuel</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Time-lapse</subject><subject>Tomography</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkT2P1DAQhi0EEsvBf7BEA0X2ZhwncTpWx8cdWokGasvrjHWOkjjYzkr8exICNDRUHnsePZrxy9gbhCMC1rf90fePZPJoUsrRTMlRPAoQeEQhsFJP2AFV0xYCVfuUHQCwKdoS4Tl7kVK_XUHWB2bK93z0NoZVsti8ROJ0DcOSfZh4cNxb4n7iPWV-KpC7hQZuEjdrNdk_kJnnwVPHM40zRfPLEq4UefYjvWTPnBkSvfp93rBvHz98vbsvzl8-PdydzoWVtchFBaWUNThFUF1asg0JoTp3aaUS5cWhLEEq2dWoXIvY1BVWEhR0AkrRGBTlDXu7ex_NoOfoRxN_6GC8vj-d9fYGskVolLjiyr7e2TmG7wulrPuwxGkdT4tayFY1jZIr9W6ntu9JkdxfLYLeQtC9_jcEvYWg9xBWxeddQevmV792k_U0Wep8JJt1F_z_y34CuNyZ6g</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Haffar, Iheb</creator><creator>Flin, Frédéric</creator><creator>Geindreau, Christian</creator><creator>Petillon, Nicolas</creator><creator>Gervais, Pierre-Colin</creator><creator>Edery, Vincent</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>202202</creationdate><title>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</title><author>Haffar, Iheb ; Flin, Frédéric ; Geindreau, Christian ; Petillon, Nicolas ; Gervais, Pierre-Colin ; Edery, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D evolution</topic><topic>Aircraft fuel systems</topic><topic>Aviation fuel</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>Ice</topic><topic>Ice crystals</topic><topic>Image processing</topic><topic>Jet engine fuels</topic><topic>Jet fuel</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Time-lapse</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haffar, Iheb</creatorcontrib><creatorcontrib>Flin, Frédéric</creatorcontrib><creatorcontrib>Geindreau, Christian</creatorcontrib><creatorcontrib>Petillon, Nicolas</creatorcontrib><creatorcontrib>Gervais, Pierre-Colin</creatorcontrib><creatorcontrib>Edery, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haffar, Iheb</au><au>Flin, Frédéric</au><au>Geindreau, Christian</au><au>Petillon, Nicolas</au><au>Gervais, Pierre-Colin</au><au>Edery, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-02</date><risdate>2022</risdate><volume>183</volume><spage>122158</spage><pages>122158-</pages><artnum>122158</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A method to characterize the 3D morphological evolution of ice in jet fuel as a function of temperature is proposed.•3D images of the sample are obtained by X-ray tomography using a dynamic cryogenic cell.•Image processing and analysis give access to the local 3D displacement measurement.•The settling and sintering effects are enhanced between −10 and −5 ∘C.
[Display omitted]
Temperature (θ) and time are key factors in both nucleation and evolution of ice crystals in jet fuels occurring inside aircraft fuel systems. In this study, we followed the morphological evolution of an ice agglomerate in jet A-1 fuel using a specific dynamic cryogenic cell (CellDyM). An in vivo experiment was conducted, imposing temperatures between −45 ∘C and −5 ∘C, while performing X-ray scans throughout the experiment. Then, image processing and analysis provided access to the morphological evolution of the ice sample, at a resolution of 7.5 μm. Three types of analyses were mainly computed: (i) cumulative evolution of the microstructure as a function of temperature and time intervals, (ii) evolution of the ice microstructure for isothermal conditions and (iii) evolution of the microstructure for different temperature jumps. Overall, the effect of temperature is minor in the θ interval of [−45, −10] ∘C, with evolution rates between 1.6 and 4.6 μm.h−1, compared to the θ interval of [−10, −5] ∘C, during which a significant change in the morphology of the ice agglomerate was observed, with an evolution rate of 10.4 μm.h−1. This study illustrates the key values of the temperature ranges that influence the ice microstructure in jet fuel and brings new insights on the physical mechanisms potentially involved.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.122158</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2022-02, Vol.183, p.122158, Article 122158 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2624987784 |
source | ScienceDirect Freedom Collection |
subjects | 3D evolution Aircraft fuel systems Aviation fuel Engineering Sciences Evolution Ice Ice crystals Image processing Jet engine fuels Jet fuel Microstructure Morphology Nucleation Temperature Temperature effects Time-lapse Tomography |
title | 3D microstructure evolution of ice in jet A-1 fuel as a function of applied temperature over time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20microstructure%20evolution%20of%20ice%20in%20jet%20A-1%20fuel%20as%20a%20function%20of%20applied%20temperature%20over%20time&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Haffar,%20Iheb&rft.date=2022-02&rft.volume=183&rft.spage=122158&rft.pages=122158-&rft.artnum=122158&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.122158&rft_dat=%3Cproquest_hal_p%3E2624987784%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-5034460f8e05b9ec7e228dfb94823bf1430484d618f911765154080d20327a123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624987784&rft_id=info:pmid/&rfr_iscdi=true |