Loading…
Primitive element pairs with a prescribed trace in the cubic extension of a finite field
We prove that for any prime power \(q\notin\{3,4,5\}\), the cubic extension \(\mathbb{F}_{q^3}\) of the finite field \(\mathbb{F}_q\) contains a primitive element \(\xi\) such that \(\xi+\xi^{-1}\) is also primitive, and \(\textrm{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_q}(\xi)=a\) for any prescribed \(a\i...
Saved in:
Published in: | arXiv.org 2022-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Booker, Andrew R Cohen, Stephen D Leong, Nicol Trudgian, Tim |
description | We prove that for any prime power \(q\notin\{3,4,5\}\), the cubic extension \(\mathbb{F}_{q^3}\) of the finite field \(\mathbb{F}_q\) contains a primitive element \(\xi\) such that \(\xi+\xi^{-1}\) is also primitive, and \(\textrm{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_q}(\xi)=a\) for any prescribed \(a\in\mathbb{F}_q\). This completes the proof of a conjecture of Gupta, Sharma, and Cohen concerning the analogous problem over an extension of arbitrary degree \(n\ge3\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2625116715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625116715</sourcerecordid><originalsourceid>FETCH-proquest_journals_26251167153</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnEloa8HdaBwdHNxIKY_wCLTYFvXzZfADnM5w74olQkqeHQ9CbFgaQp_nuShKoZRM2OPmaaRILwQccEQbYdLkA7wpdqBh8hiMpxobiF4bBLIQOwQz12QAPxFtIGfBtcvckqWICzg0O7Zu9RAw_bll-8v5frpmk3fPGUOsejd7u6RKFEJxXpRcyf-uL5AeQao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625116715</pqid></control><display><type>article</type><title>Primitive element pairs with a prescribed trace in the cubic extension of a finite field</title><source>Publicly Available Content Database</source><creator>Booker, Andrew R ; Cohen, Stephen D ; Leong, Nicol ; Trudgian, Tim</creator><creatorcontrib>Booker, Andrew R ; Cohen, Stephen D ; Leong, Nicol ; Trudgian, Tim</creatorcontrib><description>We prove that for any prime power \(q\notin\{3,4,5\}\), the cubic extension \(\mathbb{F}_{q^3}\) of the finite field \(\mathbb{F}_q\) contains a primitive element \(\xi\) such that \(\xi+\xi^{-1}\) is also primitive, and \(\textrm{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_q}(\xi)=a\) for any prescribed \(a\in\mathbb{F}_q\). This completes the proof of a conjecture of Gupta, Sharma, and Cohen concerning the analogous problem over an extension of arbitrary degree \(n\ge3\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fields (mathematics)</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2625116715?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Booker, Andrew R</creatorcontrib><creatorcontrib>Cohen, Stephen D</creatorcontrib><creatorcontrib>Leong, Nicol</creatorcontrib><creatorcontrib>Trudgian, Tim</creatorcontrib><title>Primitive element pairs with a prescribed trace in the cubic extension of a finite field</title><title>arXiv.org</title><description>We prove that for any prime power \(q\notin\{3,4,5\}\), the cubic extension \(\mathbb{F}_{q^3}\) of the finite field \(\mathbb{F}_q\) contains a primitive element \(\xi\) such that \(\xi+\xi^{-1}\) is also primitive, and \(\textrm{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_q}(\xi)=a\) for any prescribed \(a\in\mathbb{F}_q\). This completes the proof of a conjecture of Gupta, Sharma, and Cohen concerning the analogous problem over an extension of arbitrary degree \(n\ge3\).</description><subject>Fields (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnEloa8HdaBwdHNxIKY_wCLTYFvXzZfADnM5w74olQkqeHQ9CbFgaQp_nuShKoZRM2OPmaaRILwQccEQbYdLkA7wpdqBh8hiMpxobiF4bBLIQOwQz12QAPxFtIGfBtcvckqWICzg0O7Zu9RAw_bll-8v5frpmk3fPGUOsejd7u6RKFEJxXpRcyf-uL5AeQao</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Booker, Andrew R</creator><creator>Cohen, Stephen D</creator><creator>Leong, Nicol</creator><creator>Trudgian, Tim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220202</creationdate><title>Primitive element pairs with a prescribed trace in the cubic extension of a finite field</title><author>Booker, Andrew R ; Cohen, Stephen D ; Leong, Nicol ; Trudgian, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26251167153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fields (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Booker, Andrew R</creatorcontrib><creatorcontrib>Cohen, Stephen D</creatorcontrib><creatorcontrib>Leong, Nicol</creatorcontrib><creatorcontrib>Trudgian, Tim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Booker, Andrew R</au><au>Cohen, Stephen D</au><au>Leong, Nicol</au><au>Trudgian, Tim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Primitive element pairs with a prescribed trace in the cubic extension of a finite field</atitle><jtitle>arXiv.org</jtitle><date>2022-02-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We prove that for any prime power \(q\notin\{3,4,5\}\), the cubic extension \(\mathbb{F}_{q^3}\) of the finite field \(\mathbb{F}_q\) contains a primitive element \(\xi\) such that \(\xi+\xi^{-1}\) is also primitive, and \(\textrm{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_q}(\xi)=a\) for any prescribed \(a\in\mathbb{F}_q\). This completes the proof of a conjecture of Gupta, Sharma, and Cohen concerning the analogous problem over an extension of arbitrary degree \(n\ge3\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2625116715 |
source | Publicly Available Content Database |
subjects | Fields (mathematics) |
title | Primitive element pairs with a prescribed trace in the cubic extension of a finite field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Primitive%20element%20pairs%20with%20a%20prescribed%20trace%20in%20the%20cubic%20extension%20of%20a%20finite%20field&rft.jtitle=arXiv.org&rft.au=Booker,%20Andrew%20R&rft.date=2022-02-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2625116715%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26251167153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2625116715&rft_id=info:pmid/&rfr_iscdi=true |