Loading…
3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment
This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation...
Saved in:
Published in: | Computer-aided civil and infrastructure engineering 2022-01, Vol.37 (1), p.126-142 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753 |
---|---|
cites | cdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753 |
container_end_page | 142 |
container_issue | 1 |
container_start_page | 126 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 37 |
creator | Jung, Seunghoon Jeoung, Jaewon Kang, Hyuna Hong, Taehoon |
description | This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects. |
doi_str_mv | 10.1111/mice.12695 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626287094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626287094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqWw4QSW2CGl2HFix0tU_ioVsYG1lThjlJLEre206gKJI3BGToLTsGZmMU-eb8aaF0WXBM9IiJu2VjAjCRPZUTQhKeNxzhg_DhoLGguW89PozLkVDpGmdBJ90jukTLc1Te9r0xUN6qC3h-J3xn78fH2XhYMKmQ6Cdr54B9SaChqkjUUWiiY8-7oFVKhhA6rAw6jqDm3rCgwyevjDeduPDdj09bqFzp9HJ7poHFz81Wn09nD_On-Kly-Pi_ntMlYUkywuqSBCqyRPoIIKZxmlheBEp6XWmiqoaMmZSnRJaEoo8JxxVkG4HAvBSp7RaXQ17l1bs-nBebkyvQ3XOpmwkDnHIg3U9Ugpa5yzoOXa1m1h95JgOdgrB3vlwd4AkxHe1Q3s_yHl82J-P878Ah5Dgks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626287094</pqid></control><display><type>article</type><title>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Jung, Seunghoon ; Jeoung, Jaewon ; Kang, Hyuna ; Hong, Taehoon</creator><creatorcontrib>Jung, Seunghoon ; Jeoung, Jaewon ; Kang, Hyuna ; Hong, Taehoon</creatorcontrib><description>This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12695</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Clips ; Construction equipment ; Construction management ; Construction sites ; Environmental management ; Feature extraction ; Frames per second ; Neural networks ; Performance evaluation ; Project management ; Safety management ; Video</subject><ispartof>Computer-aided civil and infrastructure engineering, 2022-01, Vol.37 (1), p.126-142</ispartof><rights>2021</rights><rights>2022 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</citedby><cites>FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jung, Seunghoon</creatorcontrib><creatorcontrib>Jeoung, Jaewon</creatorcontrib><creatorcontrib>Kang, Hyuna</creatorcontrib><creatorcontrib>Hong, Taehoon</creatorcontrib><title>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</title><title>Computer-aided civil and infrastructure engineering</title><description>This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.</description><subject>Artificial neural networks</subject><subject>Clips</subject><subject>Construction equipment</subject><subject>Construction management</subject><subject>Construction sites</subject><subject>Environmental management</subject><subject>Feature extraction</subject><subject>Frames per second</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Project management</subject><subject>Safety management</subject><subject>Video</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqWw4QSW2CGl2HFix0tU_ioVsYG1lThjlJLEre206gKJI3BGToLTsGZmMU-eb8aaF0WXBM9IiJu2VjAjCRPZUTQhKeNxzhg_DhoLGguW89PozLkVDpGmdBJ90jukTLc1Te9r0xUN6qC3h-J3xn78fH2XhYMKmQ6Cdr54B9SaChqkjUUWiiY8-7oFVKhhA6rAw6jqDm3rCgwyevjDeduPDdj09bqFzp9HJ7poHFz81Wn09nD_On-Kly-Pi_ntMlYUkywuqSBCqyRPoIIKZxmlheBEp6XWmiqoaMmZSnRJaEoo8JxxVkG4HAvBSp7RaXQ17l1bs-nBebkyvQ3XOpmwkDnHIg3U9Ugpa5yzoOXa1m1h95JgOdgrB3vlwd4AkxHe1Q3s_yHl82J-P878Ah5Dgks</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Jung, Seunghoon</creator><creator>Jeoung, Jaewon</creator><creator>Kang, Hyuna</creator><creator>Hong, Taehoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202201</creationdate><title>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</title><author>Jung, Seunghoon ; Jeoung, Jaewon ; Kang, Hyuna ; Hong, Taehoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Clips</topic><topic>Construction equipment</topic><topic>Construction management</topic><topic>Construction sites</topic><topic>Environmental management</topic><topic>Feature extraction</topic><topic>Frames per second</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Project management</topic><topic>Safety management</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Seunghoon</creatorcontrib><creatorcontrib>Jeoung, Jaewon</creatorcontrib><creatorcontrib>Kang, Hyuna</creatorcontrib><creatorcontrib>Hong, Taehoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Seunghoon</au><au>Jeoung, Jaewon</au><au>Kang, Hyuna</au><au>Hong, Taehoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2022-01</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>126</spage><epage>142</epage><pages>126-142</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12695</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2022-01, Vol.37 (1), p.126-142 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_2626287094 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Artificial neural networks Clips Construction equipment Construction management Construction sites Environmental management Feature extraction Frames per second Neural networks Performance evaluation Project management Safety management Video |
title | 3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20convolutional%20neural%20network%E2%80%90based%20one%E2%80%90stage%20model%20for%20real%E2%80%90time%20action%20detection%20in%20video%20of%20construction%20equipment&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Jung,%20Seunghoon&rft.date=2022-01&rft.volume=37&rft.issue=1&rft.spage=126&rft.epage=142&rft.pages=126-142&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12695&rft_dat=%3Cproquest_cross%3E2626287094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626287094&rft_id=info:pmid/&rfr_iscdi=true |