Loading…

3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment

This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation...

Full description

Saved in:
Bibliographic Details
Published in:Computer-aided civil and infrastructure engineering 2022-01, Vol.37 (1), p.126-142
Main Authors: Jung, Seunghoon, Jeoung, Jaewon, Kang, Hyuna, Hong, Taehoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753
cites cdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753
container_end_page 142
container_issue 1
container_start_page 126
container_title Computer-aided civil and infrastructure engineering
container_volume 37
creator Jung, Seunghoon
Jeoung, Jaewon
Kang, Hyuna
Hong, Taehoon
description This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.
doi_str_mv 10.1111/mice.12695
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626287094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626287094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqWw4QSW2CGl2HFix0tU_ioVsYG1lThjlJLEre206gKJI3BGToLTsGZmMU-eb8aaF0WXBM9IiJu2VjAjCRPZUTQhKeNxzhg_DhoLGguW89PozLkVDpGmdBJ90jukTLc1Te9r0xUN6qC3h-J3xn78fH2XhYMKmQ6Cdr54B9SaChqkjUUWiiY8-7oFVKhhA6rAw6jqDm3rCgwyevjDeduPDdj09bqFzp9HJ7poHFz81Wn09nD_On-Kly-Pi_ntMlYUkywuqSBCqyRPoIIKZxmlheBEp6XWmiqoaMmZSnRJaEoo8JxxVkG4HAvBSp7RaXQ17l1bs-nBebkyvQ3XOpmwkDnHIg3U9Ugpa5yzoOXa1m1h95JgOdgrB3vlwd4AkxHe1Q3s_yHl82J-P878Ah5Dgks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626287094</pqid></control><display><type>article</type><title>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Jung, Seunghoon ; Jeoung, Jaewon ; Kang, Hyuna ; Hong, Taehoon</creator><creatorcontrib>Jung, Seunghoon ; Jeoung, Jaewon ; Kang, Hyuna ; Hong, Taehoon</creatorcontrib><description>This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12695</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Clips ; Construction equipment ; Construction management ; Construction sites ; Environmental management ; Feature extraction ; Frames per second ; Neural networks ; Performance evaluation ; Project management ; Safety management ; Video</subject><ispartof>Computer-aided civil and infrastructure engineering, 2022-01, Vol.37 (1), p.126-142</ispartof><rights>2021</rights><rights>2022 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</citedby><cites>FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jung, Seunghoon</creatorcontrib><creatorcontrib>Jeoung, Jaewon</creatorcontrib><creatorcontrib>Kang, Hyuna</creatorcontrib><creatorcontrib>Hong, Taehoon</creatorcontrib><title>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</title><title>Computer-aided civil and infrastructure engineering</title><description>This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.</description><subject>Artificial neural networks</subject><subject>Clips</subject><subject>Construction equipment</subject><subject>Construction management</subject><subject>Construction sites</subject><subject>Environmental management</subject><subject>Feature extraction</subject><subject>Frames per second</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Project management</subject><subject>Safety management</subject><subject>Video</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqWw4QSW2CGl2HFix0tU_ioVsYG1lThjlJLEre206gKJI3BGToLTsGZmMU-eb8aaF0WXBM9IiJu2VjAjCRPZUTQhKeNxzhg_DhoLGguW89PozLkVDpGmdBJ90jukTLc1Te9r0xUN6qC3h-J3xn78fH2XhYMKmQ6Cdr54B9SaChqkjUUWiiY8-7oFVKhhA6rAw6jqDm3rCgwyevjDeduPDdj09bqFzp9HJ7poHFz81Wn09nD_On-Kly-Pi_ntMlYUkywuqSBCqyRPoIIKZxmlheBEp6XWmiqoaMmZSnRJaEoo8JxxVkG4HAvBSp7RaXQ17l1bs-nBebkyvQ3XOpmwkDnHIg3U9Ugpa5yzoOXa1m1h95JgOdgrB3vlwd4AkxHe1Q3s_yHl82J-P878Ah5Dgks</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Jung, Seunghoon</creator><creator>Jeoung, Jaewon</creator><creator>Kang, Hyuna</creator><creator>Hong, Taehoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202201</creationdate><title>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</title><author>Jung, Seunghoon ; Jeoung, Jaewon ; Kang, Hyuna ; Hong, Taehoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Clips</topic><topic>Construction equipment</topic><topic>Construction management</topic><topic>Construction sites</topic><topic>Environmental management</topic><topic>Feature extraction</topic><topic>Frames per second</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Project management</topic><topic>Safety management</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Seunghoon</creatorcontrib><creatorcontrib>Jeoung, Jaewon</creatorcontrib><creatorcontrib>Kang, Hyuna</creatorcontrib><creatorcontrib>Hong, Taehoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Seunghoon</au><au>Jeoung, Jaewon</au><au>Kang, Hyuna</au><au>Hong, Taehoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2022-01</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>126</spage><epage>142</epage><pages>126-142</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This study aims to propose a three‐dimensional convolutional neural network (3D CNN)‐based one‐stage model for real‐time action detection in video of construction equipment (ADVICE). The 3D CNN‐based single‐stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN‐based one‐stage model for real‐time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12695</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2022-01, Vol.37 (1), p.126-142
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_2626287094
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Artificial neural networks
Clips
Construction equipment
Construction management
Construction sites
Environmental management
Feature extraction
Frames per second
Neural networks
Performance evaluation
Project management
Safety management
Video
title 3D convolutional neural network‐based one‐stage model for real‐time action detection in video of construction equipment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20convolutional%20neural%20network%E2%80%90based%20one%E2%80%90stage%20model%20for%20real%E2%80%90time%20action%20detection%20in%20video%20of%20construction%20equipment&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Jung,%20Seunghoon&rft.date=2022-01&rft.volume=37&rft.issue=1&rft.spage=126&rft.epage=142&rft.pages=126-142&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12695&rft_dat=%3Cproquest_cross%3E2626287094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3015-b3919fc282eded05533a971f4bfff3ced3b76c2fb13413e78676de8660996b753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626287094&rft_id=info:pmid/&rfr_iscdi=true