Loading…

Modified austenitic stainless-steel alloys for sheilding nuclear reactors

In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation...

Full description

Saved in:
Bibliographic Details
Published in:Progress in nuclear energy (New series) 2021-12, Vol.142, p.104009, Article 104009
Main Authors: Mourad, M.M., Saudi, H.A., Eissa, M.M., Hassaan, M.Y., Abdel-Latif M, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953
cites cdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953
container_end_page
container_issue
container_start_page 104009
container_title Progress in nuclear energy (New series)
container_volume 142
creator Mourad, M.M.
Saudi, H.A.
Eissa, M.M.
Hassaan, M.Y.
Abdel-Latif M, Ahmed
description In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications.
doi_str_mv 10.1016/j.pnucene.2021.104009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626294875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0149197021003656</els_id><sourcerecordid>2626294875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoThILnrkmTJs1JZPFjYcWLnkNMpppSkzVJhf33ZuneZQ4Dj_cx8xC6JnhFMOG3w2rnJwMeVg1uSMEYxvIELUgnupo1DTtFC0yYrIkU-BxdpDRgTARp2wXavATrege20lPK4F12pkpZOz9CSnWBYKz0OIZ9qvoQq_QFbrTOf1YlcgQdqwja5BDTJTrr9Zjg6riX6P3x4W39XG9fnzbr-21tKBW5NtIYzq2VQra04ZTrci8IaaTWlLXUNpJr0VFted8Rgz80Zp1kFmTfU1o0S3Qz--5i-JkgZTWEKfoSqRpeRrJOHFjtzDIxpBShV7vovnXcK4LVoTU1qGNr6tCamlsrurtZB-WFXwdRJePAG7AugsnKBvePwx-ufHiZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626294875</pqid></control><display><type>article</type><title>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</title><source>Elsevier</source><creator>Mourad, M.M. ; Saudi, H.A. ; Eissa, M.M. ; Hassaan, M.Y. ; Abdel-Latif M, Ahmed</creator><creatorcontrib>Mourad, M.M. ; Saudi, H.A. ; Eissa, M.M. ; Hassaan, M.Y. ; Abdel-Latif M, Ahmed</creatorcontrib><description>In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications.</description><identifier>ISSN: 0149-1970</identifier><identifier>EISSN: 1878-4224</identifier><identifier>DOI: 10.1016/j.pnucene.2021.104009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alloy steels ; Alloying elements ; Atomic effective number ; Atomic properties ; Attenuation coefficients ; Austenitic stainless steels ; Austenitic steel ; Cobalt ; Fast neutron ; Fast neutrons ; Gamma rays ; Germanium ; Mass attenuation coefficients ; Mathematical analysis ; Neutrons ; Nuclear reactors ; Photons ; Production costs ; Radiation shielding ; reactor sheilding ; Stainless steel</subject><ispartof>Progress in nuclear energy (New series), 2021-12, Vol.142, p.104009, Article 104009</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</citedby><cites>FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mourad, M.M.</creatorcontrib><creatorcontrib>Saudi, H.A.</creatorcontrib><creatorcontrib>Eissa, M.M.</creatorcontrib><creatorcontrib>Hassaan, M.Y.</creatorcontrib><creatorcontrib>Abdel-Latif M, Ahmed</creatorcontrib><title>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</title><title>Progress in nuclear energy (New series)</title><description>In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications.</description><subject>Alloy steels</subject><subject>Alloying elements</subject><subject>Atomic effective number</subject><subject>Atomic properties</subject><subject>Attenuation coefficients</subject><subject>Austenitic stainless steels</subject><subject>Austenitic steel</subject><subject>Cobalt</subject><subject>Fast neutron</subject><subject>Fast neutrons</subject><subject>Gamma rays</subject><subject>Germanium</subject><subject>Mass attenuation coefficients</subject><subject>Mathematical analysis</subject><subject>Neutrons</subject><subject>Nuclear reactors</subject><subject>Photons</subject><subject>Production costs</subject><subject>Radiation shielding</subject><subject>reactor sheilding</subject><subject>Stainless steel</subject><issn>0149-1970</issn><issn>1878-4224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoThILnrkmTJs1JZPFjYcWLnkNMpppSkzVJhf33ZuneZQ4Dj_cx8xC6JnhFMOG3w2rnJwMeVg1uSMEYxvIELUgnupo1DTtFC0yYrIkU-BxdpDRgTARp2wXavATrege20lPK4F12pkpZOz9CSnWBYKz0OIZ9qvoQq_QFbrTOf1YlcgQdqwja5BDTJTrr9Zjg6riX6P3x4W39XG9fnzbr-21tKBW5NtIYzq2VQra04ZTrci8IaaTWlLXUNpJr0VFted8Rgz80Zp1kFmTfU1o0S3Qz--5i-JkgZTWEKfoSqRpeRrJOHFjtzDIxpBShV7vovnXcK4LVoTU1qGNr6tCamlsrurtZB-WFXwdRJePAG7AugsnKBvePwx-ufHiZ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Mourad, M.M.</creator><creator>Saudi, H.A.</creator><creator>Eissa, M.M.</creator><creator>Hassaan, M.Y.</creator><creator>Abdel-Latif M, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202112</creationdate><title>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</title><author>Mourad, M.M. ; Saudi, H.A. ; Eissa, M.M. ; Hassaan, M.Y. ; Abdel-Latif M, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloy steels</topic><topic>Alloying elements</topic><topic>Atomic effective number</topic><topic>Atomic properties</topic><topic>Attenuation coefficients</topic><topic>Austenitic stainless steels</topic><topic>Austenitic steel</topic><topic>Cobalt</topic><topic>Fast neutron</topic><topic>Fast neutrons</topic><topic>Gamma rays</topic><topic>Germanium</topic><topic>Mass attenuation coefficients</topic><topic>Mathematical analysis</topic><topic>Neutrons</topic><topic>Nuclear reactors</topic><topic>Photons</topic><topic>Production costs</topic><topic>Radiation shielding</topic><topic>reactor sheilding</topic><topic>Stainless steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourad, M.M.</creatorcontrib><creatorcontrib>Saudi, H.A.</creatorcontrib><creatorcontrib>Eissa, M.M.</creatorcontrib><creatorcontrib>Hassaan, M.Y.</creatorcontrib><creatorcontrib>Abdel-Latif M, Ahmed</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Progress in nuclear energy (New series)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourad, M.M.</au><au>Saudi, H.A.</au><au>Eissa, M.M.</au><au>Hassaan, M.Y.</au><au>Abdel-Latif M, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</atitle><jtitle>Progress in nuclear energy (New series)</jtitle><date>2021-12</date><risdate>2021</risdate><volume>142</volume><spage>104009</spage><pages>104009-</pages><artnum>104009</artnum><issn>0149-1970</issn><eissn>1878-4224</eissn><abstract>In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pnucene.2021.104009</doi></addata></record>
fulltext fulltext
identifier ISSN: 0149-1970
ispartof Progress in nuclear energy (New series), 2021-12, Vol.142, p.104009, Article 104009
issn 0149-1970
1878-4224
language eng
recordid cdi_proquest_journals_2626294875
source Elsevier
subjects Alloy steels
Alloying elements
Atomic effective number
Atomic properties
Attenuation coefficients
Austenitic stainless steels
Austenitic steel
Cobalt
Fast neutron
Fast neutrons
Gamma rays
Germanium
Mass attenuation coefficients
Mathematical analysis
Neutrons
Nuclear reactors
Photons
Production costs
Radiation shielding
reactor sheilding
Stainless steel
title Modified austenitic stainless-steel alloys for sheilding nuclear reactors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20austenitic%20stainless-steel%20alloys%20for%20sheilding%20nuclear%20reactors&rft.jtitle=Progress%20in%20nuclear%20energy%20(New%20series)&rft.au=Mourad,%20M.M.&rft.date=2021-12&rft.volume=142&rft.spage=104009&rft.pages=104009-&rft.artnum=104009&rft.issn=0149-1970&rft.eissn=1878-4224&rft_id=info:doi/10.1016/j.pnucene.2021.104009&rft_dat=%3Cproquest_cross%3E2626294875%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626294875&rft_id=info:pmid/&rfr_iscdi=true