Loading…
Modified austenitic stainless-steel alloys for sheilding nuclear reactors
In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation...
Saved in:
Published in: | Progress in nuclear energy (New series) 2021-12, Vol.142, p.104009, Article 104009 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953 |
container_end_page | |
container_issue | |
container_start_page | 104009 |
container_title | Progress in nuclear energy (New series) |
container_volume | 142 |
creator | Mourad, M.M. Saudi, H.A. Eissa, M.M. Hassaan, M.Y. Abdel-Latif M, Ahmed |
description | In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications. |
doi_str_mv | 10.1016/j.pnucene.2021.104009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626294875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0149197021003656</els_id><sourcerecordid>2626294875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoThILnrkmTJs1JZPFjYcWLnkNMpppSkzVJhf33ZuneZQ4Dj_cx8xC6JnhFMOG3w2rnJwMeVg1uSMEYxvIELUgnupo1DTtFC0yYrIkU-BxdpDRgTARp2wXavATrege20lPK4F12pkpZOz9CSnWBYKz0OIZ9qvoQq_QFbrTOf1YlcgQdqwja5BDTJTrr9Zjg6riX6P3x4W39XG9fnzbr-21tKBW5NtIYzq2VQra04ZTrci8IaaTWlLXUNpJr0VFted8Rgz80Zp1kFmTfU1o0S3Qz--5i-JkgZTWEKfoSqRpeRrJOHFjtzDIxpBShV7vovnXcK4LVoTU1qGNr6tCamlsrurtZB-WFXwdRJePAG7AugsnKBvePwx-ufHiZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626294875</pqid></control><display><type>article</type><title>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</title><source>Elsevier</source><creator>Mourad, M.M. ; Saudi, H.A. ; Eissa, M.M. ; Hassaan, M.Y. ; Abdel-Latif M, Ahmed</creator><creatorcontrib>Mourad, M.M. ; Saudi, H.A. ; Eissa, M.M. ; Hassaan, M.Y. ; Abdel-Latif M, Ahmed</creatorcontrib><description>In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications.</description><identifier>ISSN: 0149-1970</identifier><identifier>EISSN: 1878-4224</identifier><identifier>DOI: 10.1016/j.pnucene.2021.104009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alloy steels ; Alloying elements ; Atomic effective number ; Atomic properties ; Attenuation coefficients ; Austenitic stainless steels ; Austenitic steel ; Cobalt ; Fast neutron ; Fast neutrons ; Gamma rays ; Germanium ; Mass attenuation coefficients ; Mathematical analysis ; Neutrons ; Nuclear reactors ; Photons ; Production costs ; Radiation shielding ; reactor sheilding ; Stainless steel</subject><ispartof>Progress in nuclear energy (New series), 2021-12, Vol.142, p.104009, Article 104009</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</citedby><cites>FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mourad, M.M.</creatorcontrib><creatorcontrib>Saudi, H.A.</creatorcontrib><creatorcontrib>Eissa, M.M.</creatorcontrib><creatorcontrib>Hassaan, M.Y.</creatorcontrib><creatorcontrib>Abdel-Latif M, Ahmed</creatorcontrib><title>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</title><title>Progress in nuclear energy (New series)</title><description>In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications.</description><subject>Alloy steels</subject><subject>Alloying elements</subject><subject>Atomic effective number</subject><subject>Atomic properties</subject><subject>Attenuation coefficients</subject><subject>Austenitic stainless steels</subject><subject>Austenitic steel</subject><subject>Cobalt</subject><subject>Fast neutron</subject><subject>Fast neutrons</subject><subject>Gamma rays</subject><subject>Germanium</subject><subject>Mass attenuation coefficients</subject><subject>Mathematical analysis</subject><subject>Neutrons</subject><subject>Nuclear reactors</subject><subject>Photons</subject><subject>Production costs</subject><subject>Radiation shielding</subject><subject>reactor sheilding</subject><subject>Stainless steel</subject><issn>0149-1970</issn><issn>1878-4224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoThILnrkmTJs1JZPFjYcWLnkNMpppSkzVJhf33ZuneZQ4Dj_cx8xC6JnhFMOG3w2rnJwMeVg1uSMEYxvIELUgnupo1DTtFC0yYrIkU-BxdpDRgTARp2wXavATrege20lPK4F12pkpZOz9CSnWBYKz0OIZ9qvoQq_QFbrTOf1YlcgQdqwja5BDTJTrr9Zjg6riX6P3x4W39XG9fnzbr-21tKBW5NtIYzq2VQra04ZTrci8IaaTWlLXUNpJr0VFted8Rgz80Zp1kFmTfU1o0S3Qz--5i-JkgZTWEKfoSqRpeRrJOHFjtzDIxpBShV7vovnXcK4LVoTU1qGNr6tCamlsrurtZB-WFXwdRJePAG7AugsnKBvePwx-ufHiZ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Mourad, M.M.</creator><creator>Saudi, H.A.</creator><creator>Eissa, M.M.</creator><creator>Hassaan, M.Y.</creator><creator>Abdel-Latif M, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202112</creationdate><title>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</title><author>Mourad, M.M. ; Saudi, H.A. ; Eissa, M.M. ; Hassaan, M.Y. ; Abdel-Latif M, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloy steels</topic><topic>Alloying elements</topic><topic>Atomic effective number</topic><topic>Atomic properties</topic><topic>Attenuation coefficients</topic><topic>Austenitic stainless steels</topic><topic>Austenitic steel</topic><topic>Cobalt</topic><topic>Fast neutron</topic><topic>Fast neutrons</topic><topic>Gamma rays</topic><topic>Germanium</topic><topic>Mass attenuation coefficients</topic><topic>Mathematical analysis</topic><topic>Neutrons</topic><topic>Nuclear reactors</topic><topic>Photons</topic><topic>Production costs</topic><topic>Radiation shielding</topic><topic>reactor sheilding</topic><topic>Stainless steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourad, M.M.</creatorcontrib><creatorcontrib>Saudi, H.A.</creatorcontrib><creatorcontrib>Eissa, M.M.</creatorcontrib><creatorcontrib>Hassaan, M.Y.</creatorcontrib><creatorcontrib>Abdel-Latif M, Ahmed</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Progress in nuclear energy (New series)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourad, M.M.</au><au>Saudi, H.A.</au><au>Eissa, M.M.</au><au>Hassaan, M.Y.</au><au>Abdel-Latif M, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified austenitic stainless-steel alloys for sheilding nuclear reactors</atitle><jtitle>Progress in nuclear energy (New series)</jtitle><date>2021-12</date><risdate>2021</risdate><volume>142</volume><spage>104009</spage><pages>104009-</pages><artnum>104009</artnum><issn>0149-1970</issn><eissn>1878-4224</eissn><abstract>In this study, seven different steel alloys are based on the nominal composition of free cobalt, although cobalt is one of the alloying composite elements, but it is expensive; Therefore, we proceeded to prepare cobalt-free stainless steel by using an electro slag re-melting technique as a radiation shield to reduce production cost. The proportions of the steel compound were determined using XRF techniques. The gamma and neutron shielding properties of 7 different types of stainless steel have been investigated. We have calculated the mass attenuation coefficient (μ/ρ), half value layer (HVL), and effective atomic number (Zeff) for total photon interaction in the wide energy range of 80 keV–1333 keV using hyper pure germanium (HPGe) detector and WinXCOM computer program. Furthermore, the macroscopic effective removal cross-sections (∑R) for fast neutron were calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected cobalt-free alloy steels, No. A6 with density 8.28 g/cm3 showed superior gamma ray and neutron shielding properties. This work was carried out to explore the advantages of alloy steels in gamma and neutron protection applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pnucene.2021.104009</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-1970 |
ispartof | Progress in nuclear energy (New series), 2021-12, Vol.142, p.104009, Article 104009 |
issn | 0149-1970 1878-4224 |
language | eng |
recordid | cdi_proquest_journals_2626294875 |
source | Elsevier |
subjects | Alloy steels Alloying elements Atomic effective number Atomic properties Attenuation coefficients Austenitic stainless steels Austenitic steel Cobalt Fast neutron Fast neutrons Gamma rays Germanium Mass attenuation coefficients Mathematical analysis Neutrons Nuclear reactors Photons Production costs Radiation shielding reactor sheilding Stainless steel |
title | Modified austenitic stainless-steel alloys for sheilding nuclear reactors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20austenitic%20stainless-steel%20alloys%20for%20sheilding%20nuclear%20reactors&rft.jtitle=Progress%20in%20nuclear%20energy%20(New%20series)&rft.au=Mourad,%20M.M.&rft.date=2021-12&rft.volume=142&rft.spage=104009&rft.pages=104009-&rft.artnum=104009&rft.issn=0149-1970&rft.eissn=1878-4224&rft_id=info:doi/10.1016/j.pnucene.2021.104009&rft_dat=%3Cproquest_cross%3E2626294875%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-c9cc66dd979532636a104e79c9aa3453d296a783ad6f81c0ba04894de9ff33953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626294875&rft_id=info:pmid/&rfr_iscdi=true |